Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
import copy | |
import torch | |
from ding.torch_utils import Adam, to_device | |
from ding.rl_utils import qrdqn_nstep_td_data, qrdqn_nstep_td_error, get_train_sample, get_nstep_return_data | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate, default_decollate | |
from .dqn import DQNPolicy | |
from .common_utils import default_preprocess_learn | |
class QRDQNPolicy(DQNPolicy): | |
r""" | |
Overview: | |
Policy class of QRDQN algorithm. QRDQN (https://arxiv.org/pdf/1710.10044.pdf) is a distributional RL \ | |
algorithm, which is an extension of DQN. The main idea of QRDQN is to use quantile regression to \ | |
estimate the quantile of the distribution of the return value, and then use the quantile to calculate \ | |
the quantile loss. | |
Config: | |
== ==================== ======== ============== ======================================== ======================= | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ======== ============== ======================================== ======================= | |
1 ``type`` str qrdqn | RL policy register name, refer to | this arg is optional, | |
| registry ``POLICY_REGISTRY`` | a placeholder | |
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- | |
| erent from modes | |
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy | |
| or off-policy | |
4 ``priority`` bool True | Whether use priority(PER) | priority sample, | |
| update priority | |
6 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's | |
| ``.start`` | small because rainbow use noisy net. | |
7 | ``other.eps`` float 0.05 | End value for epsilon decay. | |
| ``.end`` | |
8 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse | |
| ``factor`` [0.95, 0.999] | gamma | reward env | |
9 ``nstep`` int 3, | N-step reward discount sum for target | |
[3, 5] | q_value estimation | |
10 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary | |
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val | |
| valid in serial training | means more off-policy | |
11 ``learn.kappa`` float / | Threshold of Huber loss | |
== ==================== ======== ============== ======================================== ======================= | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='qrdqn', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. | |
on_policy=False, | |
# (bool) Whether use priority(priority sample, IS weight, update priority) | |
priority=False, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.97, | |
# (int) N-step reward for target q_value estimation | |
nstep=1, | |
learn=dict( | |
# How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=3, | |
batch_size=64, | |
learning_rate=0.001, | |
# ============================================================== | |
# The following configs are algorithm-specific | |
# ============================================================== | |
# (int) Frequence of target network update. | |
target_update_freq=100, | |
# (bool) Whether ignore done(usually for max step termination env) | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) Only one of [n_sample, n_step, n_episode] shoule be set | |
# n_sample=8, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
), | |
eval=dict(), | |
# other config | |
other=dict( | |
# Epsilon greedy with decay. | |
eps=dict( | |
# (str) Decay type. Support ['exp', 'linear']. | |
type='exp', | |
start=0.95, | |
end=0.1, | |
# (int) Decay length(env step) | |
decay=10000, | |
), | |
replay_buffer=dict(replay_buffer_size=10000, ) | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
""" | |
return 'qrdqn', ['ding.model.template.q_learning'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For QRDQN, it mainly \ | |
contains optimizer, algorithm-specific arguments such as nstep and gamma. This method \ | |
also executes some special network initializations and prepares running mean/std monitor for value. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
# Optimizer | |
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
self._gamma = self._cfg.discount_factor | |
self._nstep = self._cfg.nstep | |
# use model_wrapper for specialized demands of different modes | |
self._target_model = copy.deepcopy(self._model) | |
self._target_model = model_wrap( | |
self._target_model, | |
wrapper_name='target', | |
update_type='assign', | |
update_kwargs={'freq': self._cfg.learn.target_update_freq} | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._learn_model.reset() | |
self._target_model.reset() | |
def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, current lr. | |
Arguments: | |
- data (:obj:`dict`): Input data used for policy forward, including the \ | |
collected training samples from replay buffer. For each element in dict, the key of the \ | |
dict is the name of data items and the value is the corresponding data. Usually, the value is \ | |
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ | |
often need to first be stacked in the batch dimension by some utility functions such as \ | |
``default_preprocess_learn``. \ | |
For QRDQN, each element in list is a dict containing at least the following keys: ``obs``, \ | |
``action``, ``reward``, ``next_obs``. Sometimes, it also contains other keys such as ``weight``. | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): The output result dict of forward learn, \ | |
containing current lr, total_loss and priority. When discrete action satisfying \ | |
len(data['action'])==1, it also could contain ``action_distribution`` which is used \ | |
to draw histogram on tensorboard. For more information, please refer to the :class:`DQNPolicy`. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for QRDQNPolicy: ``ding.policy.tests.test_qrdqn``. | |
""" | |
data = default_preprocess_learn( | |
data, use_priority=self._priority, ignore_done=self._cfg.learn.ignore_done, use_nstep=True | |
) | |
if self._cuda: | |
data = to_device(data, self._device) | |
# ==================== | |
# Q-learning forward | |
# ==================== | |
self._learn_model.train() | |
self._target_model.train() | |
# Current q value (main model) | |
ret = self._learn_model.forward(data['obs']) | |
q_value, tau = ret['q'], ret['tau'] | |
# Target q value | |
with torch.no_grad(): | |
target_q_value = self._target_model.forward(data['next_obs'])['q'] | |
# Max q value action (main model) | |
target_q_action = self._learn_model.forward(data['next_obs'])['action'] | |
data_n = qrdqn_nstep_td_data( | |
q_value, target_q_value, data['action'], target_q_action, data['reward'], data['done'], tau, data['weight'] | |
) | |
value_gamma = data.get('value_gamma') | |
loss, td_error_per_sample = qrdqn_nstep_td_error( | |
data_n, self._gamma, nstep=self._nstep, value_gamma=value_gamma | |
) | |
# ==================== | |
# Q-learning update | |
# ==================== | |
self._optimizer.zero_grad() | |
loss.backward() | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._learn_model) | |
self._optimizer.step() | |
# ============= | |
# after update | |
# ============= | |
self._target_model.update(self._learn_model.state_dict()) | |
return { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': loss.item(), | |
'priority': td_error_per_sample.abs().tolist(), | |
# Only discrete action satisfying len(data['action'])==1 can return this and draw histogram on tensorboard. | |
# '[histogram]action_distribution': data['action'], | |
} | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
return { | |
'model': self._learn_model.state_dict(), | |
'target_model': self._target_model.state_dict(), | |
'optimizer': self._optimizer.state_dict(), | |
} | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._target_model.load_state_dict(state_dict['target_model']) | |
self._optimizer.load_state_dict(state_dict['optimizer']) | |