Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
from collections import namedtuple | |
import torch | |
import copy | |
import numpy as np | |
from ding.torch_utils import Adam, to_device, to_dtype, unsqueeze, ContrastiveLoss | |
from ding.rl_utils import ppo_data, ppo_error, ppo_policy_error, ppo_policy_data, get_gae_with_default_last_value, \ | |
v_nstep_td_data, v_nstep_td_error, get_nstep_return_data, get_train_sample, gae, gae_data, ppo_error_continuous, \ | |
get_gae, ppo_policy_error_continuous | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd | |
from ding.utils.data import default_collate, default_decollate | |
from .base_policy import Policy | |
from .common_utils import default_preprocess_learn | |
class PPOPolicy(Policy): | |
""" | |
Overview: | |
Policy class of on-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347. | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='ppo', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used) | |
on_policy=True, | |
# (bool) Whether to use priority (priority sample, IS weight, update priority). | |
priority=False, | |
# (bool) Whether to use Importance Sampling Weight to correct biased update due to priority. | |
# If True, priority must be True. | |
priority_IS_weight=False, | |
# (bool) Whether to recompurete advantages in each iteration of on-policy PPO. | |
recompute_adv=True, | |
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid'] | |
action_space='discrete', | |
# (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value. | |
nstep_return=False, | |
# (bool) Whether to enable multi-agent training, i.e.: MAPPO. | |
multi_agent=False, | |
# (bool) Whether to need policy ``_forward_collect`` output data in process transition. | |
transition_with_policy_data=True, | |
# learn_mode config | |
learn=dict( | |
# (int) After collecting n_sample/n_episode data, how many epoches to train models. | |
# Each epoch means the one entire passing of training data. | |
epoch_per_collect=10, | |
# (int) How many samples in a training batch. | |
batch_size=64, | |
# (float) The step size of gradient descent. | |
learning_rate=3e-4, | |
# (float) The loss weight of value network, policy network weight is set to 1. | |
value_weight=0.5, | |
# (float) The loss weight of entropy regularization, policy network weight is set to 1. | |
entropy_weight=0.0, | |
# (float) PPO clip ratio, defaults to 0.2. | |
clip_ratio=0.2, | |
# (bool) Whether to use advantage norm in a whole training batch. | |
adv_norm=True, | |
# (bool) Whether to use value norm with running mean and std in the whole training process. | |
value_norm=True, | |
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init. | |
ppo_param_init=True, | |
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm']. | |
grad_clip_type='clip_norm', | |
# (float) The gradient clip target value used in PPO. | |
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value. | |
grad_clip_value=0.5, | |
# (bool) Whether ignore done (usually for max step termination env). | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training samples collected in one collection procedure. | |
# Only one of [n_sample, n_episode] should be set. | |
# n_sample=64, | |
# (int) Split episodes or trajectories into pieces with length `unroll_len`. | |
unroll_len=1, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# (float) GAE lambda factor for the balance of bias and variance(1-step td and mc) | |
gae_lambda=0.95, | |
), | |
eval=dict(), # for compability | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
.. note:: | |
The user can define and use customized network model but must obey the same inferface definition indicated \ | |
by import_names path. For example about PPO, its registered name is ``ppo`` and the import_names is \ | |
``ding.model.template.vac``. | |
.. note:: | |
Because now PPO supports both single-agent and multi-agent usages, so we can implement these functions \ | |
with the same policy and two different default models, which is controled by ``self._cfg.multi_agent``. | |
""" | |
if self._cfg.multi_agent: | |
return 'mavac', ['ding.model.template.mavac'] | |
else: | |
return 'vac', ['ding.model.template.vac'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For PPO, it mainly contains \ | |
optimizer, algorithm-specific arguments such as loss weight, clip_ratio and recompute_adv. This method \ | |
also executes some special network initializations and prepares running mean/std monitor for value. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO" | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"] | |
self._action_space = self._cfg.action_space | |
if self._cfg.learn.ppo_param_init: | |
for n, m in self._model.named_modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.orthogonal_(m.weight) | |
torch.nn.init.zeros_(m.bias) | |
if self._action_space in ['continuous', 'hybrid']: | |
# init log sigma | |
if self._action_space == 'continuous': | |
if hasattr(self._model.actor_head, 'log_sigma_param'): | |
torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -0.5) | |
elif self._action_space == 'hybrid': # actor_head[1]: ReparameterizationHead, for action_args | |
if hasattr(self._model.actor_head[1], 'log_sigma_param'): | |
torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5) | |
for m in list(self._model.critic.modules()) + list(self._model.actor.modules()): | |
if isinstance(m, torch.nn.Linear): | |
# orthogonal initialization | |
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2)) | |
torch.nn.init.zeros_(m.bias) | |
# do last policy layer scaling, this will make initial actions have (close to) | |
# 0 mean and std, and will help boost performances, | |
# see https://arxiv.org/abs/2006.05990, Fig.24 for details | |
for m in self._model.actor.modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.zeros_(m.bias) | |
m.weight.data.copy_(0.01 * m.weight.data) | |
# Optimizer | |
self._optimizer = Adam( | |
self._model.parameters(), | |
lr=self._cfg.learn.learning_rate, | |
grad_clip_type=self._cfg.learn.grad_clip_type, | |
clip_value=self._cfg.learn.grad_clip_value | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
# Algorithm config | |
self._value_weight = self._cfg.learn.value_weight | |
self._entropy_weight = self._cfg.learn.entropy_weight | |
self._clip_ratio = self._cfg.learn.clip_ratio | |
self._adv_norm = self._cfg.learn.adv_norm | |
self._value_norm = self._cfg.learn.value_norm | |
if self._value_norm: | |
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device) | |
self._gamma = self._cfg.collect.discount_factor | |
self._gae_lambda = self._cfg.collect.gae_lambda | |
self._recompute_adv = self._cfg.recompute_adv | |
# Main model | |
self._learn_model.reset() | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, clipfrac, approx_kl. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \ | |
collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \ | |
dict is the name of data items and the value is the corresponding data. Usually, the value is \ | |
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ | |
often need to first be stacked in the batch dimension by some utility functions such as \ | |
``default_preprocess_learn``. \ | |
For PPO, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight``. | |
Returns: | |
- return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \ | |
training iteration contains append a information dict into the final list. The list will be precessed \ | |
and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \ | |
scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. tip:: | |
The training procedure of PPO is two for loops. The outer loop trains all the collected training samples \ | |
with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \ | |
the length of ``batch_size``. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False) | |
if self._cuda: | |
data = to_device(data, self._device) | |
data['obs'] = to_dtype(data['obs'], torch.float32) | |
if 'next_obs' in data: | |
data['next_obs'] = to_dtype(data['next_obs'], torch.float32) | |
# ==================== | |
# PPO forward | |
# ==================== | |
return_infos = [] | |
self._learn_model.train() | |
for epoch in range(self._cfg.learn.epoch_per_collect): | |
if self._recompute_adv: # calculate new value using the new updated value network | |
with torch.no_grad(): | |
value = self._learn_model.forward(data['obs'], mode='compute_critic')['value'] | |
next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value'] | |
if self._value_norm: | |
value *= self._running_mean_std.std | |
next_value *= self._running_mean_std.std | |
traj_flag = data.get('traj_flag', None) # traj_flag indicates termination of trajectory | |
compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag) | |
data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda) | |
unnormalized_returns = value + data['adv'] | |
if self._value_norm: | |
data['value'] = value / self._running_mean_std.std | |
data['return'] = unnormalized_returns / self._running_mean_std.std | |
self._running_mean_std.update(unnormalized_returns.cpu().numpy()) | |
else: | |
data['value'] = value | |
data['return'] = unnormalized_returns | |
else: # don't recompute adv | |
if self._value_norm: | |
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std | |
data['return'] = unnormalized_return / self._running_mean_std.std | |
self._running_mean_std.update(unnormalized_return.cpu().numpy()) | |
else: | |
data['return'] = data['adv'] + data['value'] | |
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): | |
output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic') | |
adv = batch['adv'] | |
if self._adv_norm: | |
# Normalize advantage in a train_batch | |
adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
# Calculate ppo error | |
if self._action_space == 'continuous': | |
ppo_batch = ppo_data( | |
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
batch['return'], batch['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio) | |
elif self._action_space == 'discrete': | |
ppo_batch = ppo_data( | |
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
batch['return'], batch['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio) | |
elif self._action_space == 'hybrid': | |
# discrete part (discrete policy loss and entropy loss) | |
ppo_discrete_batch = ppo_policy_data( | |
output['logit']['action_type'], batch['logit']['action_type'], batch['action']['action_type'], | |
adv, batch['weight'] | |
) | |
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio) | |
# continuous part (continuous policy loss and entropy loss, value loss) | |
ppo_continuous_batch = ppo_data( | |
output['logit']['action_args'], batch['logit']['action_args'], batch['action']['action_args'], | |
output['value'], batch['value'], adv, batch['return'], batch['weight'] | |
) | |
ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous( | |
ppo_continuous_batch, self._clip_ratio | |
) | |
# sum discrete and continuous loss | |
ppo_loss = type(ppo_continuous_loss)( | |
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss, | |
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss | |
) | |
ppo_info = type(ppo_continuous_info)( | |
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl), | |
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac) | |
) | |
wv, we = self._value_weight, self._entropy_weight | |
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
self._optimizer.step() | |
return_info = { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': total_loss.item(), | |
'policy_loss': ppo_loss.policy_loss.item(), | |
'value_loss': ppo_loss.value_loss.item(), | |
'entropy_loss': ppo_loss.entropy_loss.item(), | |
'adv_max': adv.max().item(), | |
'adv_mean': adv.mean().item(), | |
'value_mean': output['value'].mean().item(), | |
'value_max': output['value'].max().item(), | |
'approx_kl': ppo_info.approx_kl, | |
'clipfrac': ppo_info.clipfrac, | |
} | |
if self._action_space == 'continuous': | |
return_info.update( | |
{ | |
'act': batch['action'].float().mean().item(), | |
'mu_mean': output['logit']['mu'].mean().item(), | |
'sigma_mean': output['logit']['sigma'].mean().item(), | |
} | |
) | |
return_infos.append(return_info) | |
return return_infos | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Initialize the collect mode of policy, including related attributes and modules. For PPO, it contains the \ | |
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ | |
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. | |
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
.. tip:: | |
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \ | |
This design is for the convenience of parallel execution of different policy modes. | |
""" | |
self._unroll_len = self._cfg.collect.unroll_len | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"], self._cfg.action_space | |
self._action_space = self._cfg.action_space | |
if self._action_space == 'continuous': | |
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') | |
elif self._action_space == 'discrete': | |
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
elif self._action_space == 'hybrid': | |
self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample') | |
self._collect_model.reset() | |
self._gamma = self._cfg.collect.discount_factor | |
self._gae_lambda = self._cfg.collect.gae_lambda | |
self._recompute_adv = self._cfg.recompute_adv | |
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
data, such as the action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \ | |
method. The key of the dict is the same as the input data, i.e. environment id. | |
.. tip:: | |
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ | |
related data as extra keyword arguments of this method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
with torch.no_grad(): | |
output = self._collect_model.forward(data, mode='compute_actor_critic') | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
as input. For PPO, it contains the state value, action and the logit of the action. | |
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
reward, done, info, etc. | |
Returns: | |
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
.. note:: | |
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \ | |
You can delete this field to save memory occupancy if you do not need nstep return. | |
""" | |
transition = { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'action': policy_output['action'], | |
'logit': policy_output['logit'], | |
'value': policy_output['value'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
can be used for training directly. In PPO, a train sample is a processed transition with new computed \ | |
``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \ | |
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ | |
In addition, you can also implement this method as an identity function and do the data processing \ | |
in ``self._forward_learn`` method. | |
Arguments: | |
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
the same format as the return value of ``self._process_transition`` method. | |
Returns: | |
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
as input transitions, but may contain more data for training, such as GAE advantage. | |
""" | |
data = transitions | |
data = to_device(data, self._device) | |
for transition in data: | |
transition['traj_flag'] = copy.deepcopy(transition['done']) | |
data[-1]['traj_flag'] = True | |
if self._cfg.learn.ignore_done: | |
data[-1]['done'] = False | |
if data[-1]['done']: | |
last_value = torch.zeros_like(data[-1]['value']) | |
else: | |
with torch.no_grad(): | |
last_value = self._collect_model.forward( | |
unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic' | |
)['value'] | |
if len(last_value.shape) == 2: # multi_agent case: | |
last_value = last_value.squeeze(0) | |
if self._value_norm: | |
last_value *= self._running_mean_std.std | |
for i in range(len(data)): | |
data[i]['value'] *= self._running_mean_std.std | |
data = get_gae( | |
data, | |
to_device(last_value, self._device), | |
gamma=self._gamma, | |
gae_lambda=self._gae_lambda, | |
cuda=False, | |
) | |
if self._value_norm: | |
for i in range(len(data)): | |
data[i]['value'] /= self._running_mean_std.std | |
# remove next_obs for save memory when not recompute adv | |
if not self._recompute_adv: | |
for i in range(len(data)): | |
data[i].pop('next_obs') | |
return get_train_sample(data, self._unroll_len) | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Initialize the eval mode of policy, including related attributes and modules. For PPO, it contains the \ | |
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action). | |
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
""" | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"] | |
self._action_space = self._cfg.action_space | |
if self._action_space == 'continuous': | |
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') | |
elif self._action_space == 'discrete': | |
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
elif self._action_space == 'hybrid': | |
self._eval_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample') | |
self._eval_model.reset() | |
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \ | |
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ | |
exploitation. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
key of the dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
output = self._eval_model.forward(data, mode='compute_actor') | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
variables = super()._monitor_vars_learn() + [ | |
'policy_loss', | |
'value_loss', | |
'entropy_loss', | |
'adv_max', | |
'adv_mean', | |
'approx_kl', | |
'clipfrac', | |
'value_max', | |
'value_mean', | |
] | |
if self._action_space == 'continuous': | |
variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act'] | |
return variables | |
class PPOPGPolicy(Policy): | |
""" | |
Overview: | |
Policy class of on policy version PPO algorithm (pure policy gradient without value network). | |
Paper link: https://arxiv.org/abs/1707.06347. | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='ppo_pg', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used) | |
on_policy=True, | |
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid'] | |
action_space='discrete', | |
# (bool) Whether to enable multi-agent training, i.e.: MAPPO. | |
multi_agent=False, | |
# (bool) Whether to need policy data in process transition. | |
transition_with_policy_data=True, | |
# learn_mode config | |
learn=dict( | |
# (int) After collecting n_sample/n_episode data, how many epoches to train models. | |
# Each epoch means the one entire passing of training data. | |
epoch_per_collect=10, | |
# (int) How many samples in a training batch. | |
batch_size=64, | |
# (float) The step size of gradient descent. | |
learning_rate=3e-4, | |
# (float) The loss weight of entropy regularization, policy network weight is set to 1. | |
entropy_weight=0.0, | |
# (float) PPO clip ratio, defaults to 0.2. | |
clip_ratio=0.2, | |
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init. | |
ppo_param_init=True, | |
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm']. | |
grad_clip_type='clip_norm', | |
# (float) The gradient clip target value used in PPO. | |
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value. | |
grad_clip_value=0.5, | |
# (bool) Whether ignore done (usually for max step termination env). | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training episodes collected in one collection process. Only one of n_episode shoule be set. | |
# n_episode=8, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
), | |
eval=dict(), # for compability | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
""" | |
return 'pg', ['ding.model.template.pg'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For PPOPG, it mainly \ | |
contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \ | |
also executes some special network initializations. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
assert self._cfg.action_space in ["continuous", "discrete"] | |
self._action_space = self._cfg.action_space | |
if self._cfg.learn.ppo_param_init: | |
for n, m in self._model.named_modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.orthogonal_(m.weight) | |
torch.nn.init.zeros_(m.bias) | |
if self._action_space == 'continuous': | |
if hasattr(self._model.head, 'log_sigma_param'): | |
torch.nn.init.constant_(self._model.head.log_sigma_param, -0.5) | |
for m in self._model.modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.zeros_(m.bias) | |
m.weight.data.copy_(0.01 * m.weight.data) | |
# Optimizer | |
self._optimizer = Adam( | |
self._model.parameters(), | |
lr=self._cfg.learn.learning_rate, | |
grad_clip_type=self._cfg.learn.grad_clip_type, | |
clip_value=self._cfg.learn.grad_clip_value | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
# Algorithm config | |
self._entropy_weight = self._cfg.learn.entropy_weight | |
self._clip_ratio = self._cfg.learn.clip_ratio | |
self._gamma = self._cfg.collect.discount_factor | |
# Main model | |
self._learn_model.reset() | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, clipfrac, approx_kl. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \ | |
collected training samples for on-policy algorithms like PPO. For each element in list, the key of the \ | |
dict is the name of data items and the value is the corresponding data. Usually, the value is \ | |
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ | |
often need to first be stacked in the batch dimension by some utility functions such as \ | |
``default_preprocess_learn``. \ | |
For PPOPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ | |
``return``, ``logit``, ``done``. Sometimes, it also contains other keys such as ``weight``. | |
Returns: | |
- return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \ | |
training iteration contains append a information dict into the final list. The list will be precessed \ | |
and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \ | |
scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. tip:: | |
The training procedure of PPOPG is two for loops. The outer loop trains all the collected training samples \ | |
with ``epoch_per_collect`` epochs. The inner loop splits all the data into different mini-batch with \ | |
the length of ``batch_size``. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
""" | |
data = default_preprocess_learn(data) | |
if self._cuda: | |
data = to_device(data, self._device) | |
return_infos = [] | |
self._learn_model.train() | |
for epoch in range(self._cfg.learn.epoch_per_collect): | |
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): | |
output = self._learn_model.forward(batch['obs']) | |
ppo_batch = ppo_policy_data( | |
output['logit'], batch['logit'], batch['action'], batch['return'], batch['weight'] | |
) | |
if self._action_space == 'continuous': | |
ppo_loss, ppo_info = ppo_policy_error_continuous(ppo_batch, self._clip_ratio) | |
elif self._action_space == 'discrete': | |
ppo_loss, ppo_info = ppo_policy_error(ppo_batch, self._clip_ratio) | |
total_loss = ppo_loss.policy_loss - self._entropy_weight * ppo_loss.entropy_loss | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
self._optimizer.step() | |
return_info = { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': total_loss.item(), | |
'policy_loss': ppo_loss.policy_loss.item(), | |
'entropy_loss': ppo_loss.entropy_loss.item(), | |
'approx_kl': ppo_info.approx_kl, | |
'clipfrac': ppo_info.clipfrac, | |
} | |
if self._action_space == 'continuous': | |
return_info.update( | |
{ | |
'act': batch['action'].float().mean().item(), | |
'mu_mean': output['logit']['mu'].mean().item(), | |
'sigma_mean': output['logit']['sigma'].mean().item(), | |
} | |
) | |
return_infos.append(return_info) | |
return return_infos | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Initialize the collect mode of policy, including related attributes and modules. For PPOPG, it contains \ | |
the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ | |
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. | |
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
.. tip:: | |
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \ | |
This design is for the convenience of parallel execution of different policy modes. | |
""" | |
assert self._cfg.action_space in ["continuous", "discrete"], self._cfg.action_space | |
self._action_space = self._cfg.action_space | |
self._unroll_len = self._cfg.collect.unroll_len | |
if self._action_space == 'continuous': | |
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') | |
elif self._action_space == 'discrete': | |
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
self._collect_model.reset() | |
self._gamma = self._cfg.collect.discount_factor | |
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
data, such as the action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
other necessary data (action logit) for learn mode defined in ``self._process_transition`` \ | |
method. The key of the dict is the same as the input data, i.e. environment id. | |
.. tip:: | |
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ | |
related data as extra keyword arguments of this method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
with torch.no_grad(): | |
output = self._collect_model.forward(data) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
saved in replay buffer. For PPOPG, it contains obs, action, reward, done, logit. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
as input. For PPOPG, it contains the action and the logit of the action. | |
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
reward, done, info, etc. | |
Returns: | |
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
""" | |
transition = { | |
'obs': obs, | |
'action': policy_output['action'], | |
'logit': policy_output['logit'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
For a given entire episode data (a list of transition), process it into a list of sample that \ | |
can be used for training directly. In PPOPG, a train sample is a processed transition with new computed \ | |
``return`` field. This method is usually used in collectors to execute necessary \ | |
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ | |
In addition, you can also implement this method as an identity function and do the data processing \ | |
in ``self._forward_learn`` method. | |
Arguments: | |
- data (:obj:`List[Dict[str, Any]`): The episode data (a list of transition), each element is \ | |
the same format as the return value of ``self._process_transition`` method. | |
Returns: | |
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
as input transitions, but may contain more data for training, such as discounted episode return. | |
""" | |
assert data[-1]['done'] is True, "PPO-PG needs a complete epsiode" | |
if self._cfg.learn.ignore_done: | |
raise NotImplementedError | |
R = 0. | |
for i in reversed(range(len(data))): | |
R = self._gamma * R + data[i]['reward'] | |
data[i]['return'] = R | |
return get_train_sample(data, self._unroll_len) | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Initialize the eval mode of policy, including related attributes and modules. For PPOPG, it contains the \ | |
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action). | |
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
""" | |
assert self._cfg.action_space in ["continuous", "discrete"] | |
self._action_space = self._cfg.action_space | |
if self._action_space == 'continuous': | |
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') | |
elif self._action_space == 'discrete': | |
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._eval_model.reset() | |
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \ | |
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ | |
exploitation. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
key of the dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOPGPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
output = self._eval_model.forward(data) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
return super()._monitor_vars_learn() + [ | |
'policy_loss', | |
'entropy_loss', | |
'approx_kl', | |
'clipfrac', | |
] | |
class PPOOffPolicy(Policy): | |
""" | |
Overview: | |
Policy class of off-policy version PPO algorithm. Paper link: https://arxiv.org/abs/1707.06347. | |
This version is more suitable for large-scale distributed training. | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='ppo', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
on_policy=False, | |
# (bool) Whether to use priority (priority sample, IS weight, update priority). | |
priority=False, | |
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
priority_IS_weight=False, | |
# (str) Which kind of action space used in PPOPolicy, ["continuous", "discrete", "hybrid"]. | |
action_space='discrete', | |
# (bool) Whether to use nstep_return for value loss. | |
nstep_return=False, | |
# (int) The timestep of TD (temporal-difference) loss. | |
nstep=3, | |
# (bool) Whether to need policy data in process transition. | |
transition_with_policy_data=True, | |
# learn_mode config | |
learn=dict( | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=5, | |
# (int) How many samples in a training batch. | |
batch_size=64, | |
# (float) The step size of gradient descent. | |
learning_rate=0.001, | |
# (float) The loss weight of value network, policy network weight is set to 1. | |
value_weight=0.5, | |
# (float) The loss weight of entropy regularization, policy network weight is set to 1. | |
entropy_weight=0.01, | |
# (float) PPO clip ratio, defaults to 0.2. | |
clip_ratio=0.2, | |
# (bool) Whether to use advantage norm in a whole training batch. | |
adv_norm=False, | |
# (bool) Whether to use value norm with running mean and std in the whole training process. | |
value_norm=True, | |
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init. | |
ppo_param_init=True, | |
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm']. | |
grad_clip_type='clip_norm', | |
# (float) The gradient clip target value used in PPO. | |
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value. | |
grad_clip_value=0.5, | |
# (bool) Whether ignore done (usually for max step termination env). | |
ignore_done=False, | |
# (float) The weight decay (L2 regularization) loss weight, defaults to 0.0. | |
weight_decay=0.0, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training samples collected in one collection procedure. | |
# Only one of [n_sample, n_episode] shoule be set. | |
# n_sample=64, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# (float) GAE lambda factor for the balance of bias and variance (1-step td and mc). | |
gae_lambda=0.95, | |
), | |
eval=dict(), # for compability | |
other=dict( | |
replay_buffer=dict( | |
# (int) Maximum size of replay buffer. Usually, larger buffer size is better. | |
replay_buffer_size=10000, | |
), | |
), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ | |
automatically call this method to get the default model setting and create model. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. | |
""" | |
return 'vac', ['ding.model.template.vac'] | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Initialize the learn mode of policy, including related attributes and modules. For PPOOff, it mainly \ | |
contains optimizer, algorithm-specific arguments such as loss weight and clip_ratio. This method \ | |
also executes some special network initializations and prepares running mean/std monitor for value. | |
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. | |
.. note:: | |
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ | |
and ``_load_state_dict_learn`` methods. | |
.. note:: | |
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ | |
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. | |
""" | |
self._priority = self._cfg.priority | |
self._priority_IS_weight = self._cfg.priority_IS_weight | |
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPOOff" | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"] | |
self._action_space = self._cfg.action_space | |
if self._cfg.learn.ppo_param_init: | |
for n, m in self._model.named_modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.orthogonal_(m.weight) | |
torch.nn.init.zeros_(m.bias) | |
if self._action_space in ['continuous', 'hybrid']: | |
# init log sigma | |
if self._action_space == 'continuous': | |
if hasattr(self._model.actor_head, 'log_sigma_param'): | |
torch.nn.init.constant_(self._model.actor_head.log_sigma_param, -2.0) | |
elif self._action_space == 'hybrid': # actor_head[1]: ReparameterizationHead, for action_args | |
if hasattr(self._model.actor_head[1], 'log_sigma_param'): | |
torch.nn.init.constant_(self._model.actor_head[1].log_sigma_param, -0.5) | |
for m in list(self._model.critic.modules()) + list(self._model.actor.modules()): | |
if isinstance(m, torch.nn.Linear): | |
# orthogonal initialization | |
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2)) | |
torch.nn.init.zeros_(m.bias) | |
# do last policy layer scaling, this will make initial actions have (close to) | |
# 0 mean and std, and will help boost performances, | |
# see https://arxiv.org/abs/2006.05990, Fig.24 for details | |
for m in self._model.actor.modules(): | |
if isinstance(m, torch.nn.Linear): | |
torch.nn.init.zeros_(m.bias) | |
m.weight.data.copy_(0.01 * m.weight.data) | |
# Optimizer | |
self._optimizer = Adam( | |
self._model.parameters(), | |
lr=self._cfg.learn.learning_rate, | |
grad_clip_type=self._cfg.learn.grad_clip_type, | |
clip_value=self._cfg.learn.grad_clip_value | |
) | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
# Algorithm config | |
self._value_weight = self._cfg.learn.value_weight | |
self._entropy_weight = self._cfg.learn.entropy_weight | |
self._clip_ratio = self._cfg.learn.clip_ratio | |
self._adv_norm = self._cfg.learn.adv_norm | |
self._value_norm = self._cfg.learn.value_norm | |
if self._value_norm: | |
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device) | |
self._gamma = self._cfg.collect.discount_factor | |
self._gae_lambda = self._cfg.collect.gae_lambda | |
self._nstep = self._cfg.nstep | |
self._nstep_return = self._cfg.nstep_return | |
# Main model | |
self._learn_model.reset() | |
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]: | |
""" | |
Overview: | |
Policy forward function of learn mode (training policy and updating parameters). Forward means \ | |
that the policy inputs some training batch data from the replay buffer and then returns the output \ | |
result, including various training information such as loss, clipfrac and approx_kl. | |
Arguments: | |
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ | |
training samples. For each element in list, the key of the dict is the name of data items and the \ | |
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ | |
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ | |
dimension by some utility functions such as ``default_preprocess_learn``. \ | |
For PPOOff, each element in list is a dict containing at least the following keys: ``obs``, ``adv``, \ | |
``action``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ | |
and ``value_gamma``. | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ | |
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ | |
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
""" | |
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return) | |
if self._cuda: | |
data = to_device(data, self._device) | |
data['obs'] = to_dtype(data['obs'], torch.float32) | |
if 'next_obs' in data: | |
data['next_obs'] = to_dtype(data['next_obs'], torch.float32) | |
# ==================== | |
# PPO forward | |
# ==================== | |
self._learn_model.train() | |
with torch.no_grad(): | |
if self._value_norm: | |
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std | |
data['return'] = unnormalized_return / self._running_mean_std.std | |
self._running_mean_std.update(unnormalized_return.cpu().numpy()) | |
else: | |
data['return'] = data['adv'] + data['value'] | |
# normal ppo | |
if not self._nstep_return: | |
output = self._learn_model.forward(data['obs'], mode='compute_actor_critic') | |
adv = data['adv'] | |
if self._adv_norm: | |
# Normalize advantage in a total train_batch | |
adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
# Calculate ppo loss | |
if self._action_space == 'continuous': | |
ppodata = ppo_data( | |
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'], | |
data['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error_continuous(ppodata, self._clip_ratio) | |
elif self._action_space == 'discrete': | |
ppodata = ppo_data( | |
output['logit'], data['logit'], data['action'], output['value'], data['value'], adv, data['return'], | |
data['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio) | |
elif self._action_space == 'hybrid': | |
# discrete part (discrete policy loss and entropy loss) | |
ppo_discrete_batch = ppo_policy_data( | |
output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv, | |
data['weight'] | |
) | |
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_batch, self._clip_ratio) | |
# continuous part (continuous policy loss and entropy loss, value loss) | |
ppo_continuous_batch = ppo_data( | |
output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'], | |
output['value'], data['value'], adv, data['return'], data['weight'] | |
) | |
ppo_continuous_loss, ppo_continuous_info = ppo_error_continuous(ppo_continuous_batch, self._clip_ratio) | |
# sum discrete and continuous loss | |
ppo_loss = type(ppo_continuous_loss)( | |
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, ppo_continuous_loss.value_loss, | |
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss | |
) | |
ppo_info = type(ppo_continuous_info)( | |
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl), | |
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac) | |
) | |
wv, we = self._value_weight, self._entropy_weight | |
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss | |
else: | |
output = self._learn_model.forward(data['obs'], mode='compute_actor') | |
adv = data['adv'] | |
if self._adv_norm: | |
# Normalize advantage in a total train_batch | |
adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
# Calculate ppo loss | |
if self._action_space == 'continuous': | |
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight']) | |
ppo_policy_loss, ppo_info = ppo_policy_error_continuous(ppodata, self._clip_ratio) | |
elif self._action_space == 'discrete': | |
ppodata = ppo_policy_data(output['logit'], data['logit'], data['action'], adv, data['weight']) | |
ppo_policy_loss, ppo_info = ppo_policy_error(ppodata, self._clip_ratio) | |
elif self._action_space == 'hybrid': | |
# discrete part (discrete policy loss and entropy loss) | |
ppo_discrete_data = ppo_policy_data( | |
output['logit']['action_type'], data['logit']['action_type'], data['action']['action_type'], adv, | |
data['weight'] | |
) | |
ppo_discrete_loss, ppo_discrete_info = ppo_policy_error(ppo_discrete_data, self._clip_ratio) | |
# continuous part (continuous policy loss and entropy loss, value loss) | |
ppo_continuous_data = ppo_policy_data( | |
output['logit']['action_args'], data['logit']['action_args'], data['action']['action_args'], adv, | |
data['weight'] | |
) | |
ppo_continuous_loss, ppo_continuous_info = ppo_policy_error_continuous( | |
ppo_continuous_data, self._clip_ratio | |
) | |
# sum discrete and continuous loss | |
ppo_policy_loss = type(ppo_continuous_loss)( | |
ppo_continuous_loss.policy_loss + ppo_discrete_loss.policy_loss, | |
ppo_continuous_loss.entropy_loss + ppo_discrete_loss.entropy_loss | |
) | |
ppo_info = type(ppo_continuous_info)( | |
max(ppo_continuous_info.approx_kl, ppo_discrete_info.approx_kl), | |
max(ppo_continuous_info.clipfrac, ppo_discrete_info.clipfrac) | |
) | |
wv, we = self._value_weight, self._entropy_weight | |
next_obs = data.get('next_obs') | |
value_gamma = data.get('value_gamma') | |
reward = data.get('reward') | |
# current value | |
value = self._learn_model.forward(data['obs'], mode='compute_critic') | |
# target value | |
next_data = {'obs': next_obs} | |
target_value = self._learn_model.forward(next_data['obs'], mode='compute_critic') | |
# TODO what should we do here to keep shape | |
assert self._nstep > 1 | |
td_data = v_nstep_td_data( | |
value['value'], target_value['value'], reward, data['done'], data['weight'], value_gamma | |
) | |
# calculate v_nstep_td critic_loss | |
critic_loss, td_error_per_sample = v_nstep_td_error(td_data, self._gamma, self._nstep) | |
ppo_loss_data = namedtuple('ppo_loss', ['policy_loss', 'value_loss', 'entropy_loss']) | |
ppo_loss = ppo_loss_data(ppo_policy_loss.policy_loss, critic_loss, ppo_policy_loss.entropy_loss) | |
total_loss = ppo_policy_loss.policy_loss + wv * critic_loss - we * ppo_policy_loss.entropy_loss | |
# ==================== | |
# PPO update | |
# ==================== | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
self._optimizer.step() | |
return_info = { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': total_loss.item(), | |
'policy_loss': ppo_loss.policy_loss.item(), | |
'value': data['value'].mean().item(), | |
'value_loss': ppo_loss.value_loss.item(), | |
'entropy_loss': ppo_loss.entropy_loss.item(), | |
'adv_abs_max': adv.abs().max().item(), | |
'approx_kl': ppo_info.approx_kl, | |
'clipfrac': ppo_info.clipfrac, | |
} | |
if self._action_space == 'continuous': | |
return_info.update( | |
{ | |
'act': data['action'].float().mean().item(), | |
'mu_mean': output['logit']['mu'].mean().item(), | |
'sigma_mean': output['logit']['sigma'].mean().item(), | |
} | |
) | |
return return_info | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Initialize the collect mode of policy, including related attributes and modules. For PPOOff, it contains \ | |
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ | |
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. | |
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ | |
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. | |
.. tip:: | |
Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPOOff. | |
This design is for the convenience of parallel execution of different policy modes. | |
""" | |
self._unroll_len = self._cfg.collect.unroll_len | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"] | |
self._action_space = self._cfg.action_space | |
if self._action_space == 'continuous': | |
self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample') | |
elif self._action_space == 'discrete': | |
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') | |
elif self._action_space == 'hybrid': | |
self._collect_model = model_wrap(self._model, wrapper_name='hybrid_reparam_multinomial_sample') | |
self._collect_model.reset() | |
self._gamma = self._cfg.collect.discount_factor | |
self._gae_lambda = self._cfg.collect.gae_lambda | |
self._nstep = self._cfg.nstep | |
self._nstep_return = self._cfg.nstep_return | |
self._value_norm = self._cfg.learn.value_norm | |
if self._value_norm: | |
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device) | |
def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ | |
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ | |
data, such as the action to interact with the envs. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ | |
other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \ | |
method. The key of the dict is the same as the input data, i.e. environment id. | |
.. tip:: | |
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ | |
related data as extra keyword arguments of this method. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._collect_model.eval() | |
with torch.no_grad(): | |
output = self._collect_model.forward(data, mode='compute_actor_critic') | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor], | |
timestep: namedtuple) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Process and pack one timestep transition data into a dict, which can be directly used for training and \ | |
saved in replay buffer. For PPO, it contains obs, next_obs, action, reward, done, logit, value. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari. | |
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \ | |
as input. For PPO, it contains the state value, action and the logit of the action. | |
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \ | |
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \ | |
reward, done, info, etc. | |
Returns: | |
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep. | |
.. note:: | |
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \ | |
You can delete this field to save memory occupancy if you do not need nstep return. | |
""" | |
transition = { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'logit': policy_output['logit'], | |
'action': policy_output['action'], | |
'value': policy_output['value'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]: | |
""" | |
Overview: | |
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ | |
can be used for training directly. In PPO, a train sample is a processed transition with new computed \ | |
``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \ | |
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ | |
In addition, you can also implement this method as an identity function and do the data processing \ | |
in ``self._forward_learn`` method. | |
Arguments: | |
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \ | |
the same format as the return value of ``self._process_transition`` method. | |
Returns: | |
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \ | |
as input transitions, but may contain more data for training, such as GAE advantage. | |
""" | |
data = transitions | |
data = to_device(data, self._device) | |
for transition in data: | |
transition['traj_flag'] = copy.deepcopy(transition['done']) | |
data[-1]['traj_flag'] = True | |
if self._cfg.learn.ignore_done: | |
data[-1]['done'] = False | |
if data[-1]['done']: | |
last_value = torch.zeros_like(data[-1]['value']) | |
else: | |
with torch.no_grad(): | |
last_value = self._collect_model.forward( | |
unsqueeze(data[-1]['next_obs'], 0), mode='compute_actor_critic' | |
)['value'] | |
if len(last_value.shape) == 2: # multi_agent case: | |
last_value = last_value.squeeze(0) | |
if self._value_norm: | |
last_value *= self._running_mean_std.std | |
for i in range(len(data)): | |
data[i]['value'] *= self._running_mean_std.std | |
data = get_gae( | |
data, | |
to_device(last_value, self._device), | |
gamma=self._gamma, | |
gae_lambda=self._gae_lambda, | |
cuda=False, | |
) | |
if self._value_norm: | |
for i in range(len(data)): | |
data[i]['value'] /= self._running_mean_std.std | |
if not self._nstep_return: | |
return get_train_sample(data, self._unroll_len) | |
else: | |
return get_nstep_return_data(data, self._nstep) | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Initialize the eval mode of policy, including related attributes and modules. For PPOOff, it contains the \ | |
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action). | |
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. | |
.. note:: | |
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ | |
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. | |
""" | |
assert self._cfg.action_space in ["continuous", "discrete", "hybrid"] | |
self._action_space = self._cfg.action_space | |
if self._action_space == 'continuous': | |
self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample') | |
elif self._action_space == 'discrete': | |
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
elif self._action_space == 'hybrid': | |
self._eval_model = model_wrap(self._model, wrapper_name='hybrid_deterministic_argmax_sample') | |
self._eval_model.reset() | |
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]: | |
""" | |
Overview: | |
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ | |
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ | |
action to interact with the envs. ``_forward_eval`` in PPO often uses deterministic sample method to get \ | |
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ | |
exploitation. | |
Arguments: | |
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \ | |
key of the dict is environment id and the value is the corresponding data of the env. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ | |
key of the dict is the same as the input data, i.e. environment id. | |
.. note:: | |
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ | |
For the data type that not supported, the main reason is that the corresponding model does not support it. \ | |
You can implement you own model rather than use the default model. For more information, please raise an \ | |
issue in GitHub repo and we will continue to follow up. | |
.. note:: | |
For more detailed examples, please refer to our unittest for PPOOffPolicy: ``ding.policy.tests.test_ppo``. | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
self._eval_model.eval() | |
with torch.no_grad(): | |
output = self._eval_model.forward(data, mode='compute_actor') | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
variables = super()._monitor_vars_learn() + [ | |
'policy_loss', 'value', 'value_loss', 'entropy_loss', 'adv_abs_max', 'approx_kl', 'clipfrac' | |
] | |
if self._action_space == 'continuous': | |
variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act'] | |
return variables | |
class PPOSTDIMPolicy(PPOPolicy): | |
""" | |
Overview: | |
Policy class of on policy version PPO algorithm with ST-DIM auxiliary model. | |
PPO paper link: https://arxiv.org/abs/1707.06347. | |
ST-DIM paper link: https://arxiv.org/abs/1906.08226. | |
""" | |
config = dict( | |
# (str) RL policy register name (refer to function "POLICY_REGISTRY"). | |
type='ppo_stdim', | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used) | |
on_policy=True, | |
# (bool) Whether to use priority(priority sample, IS weight, update priority) | |
priority=False, | |
# (bool) Whether to use Importance Sampling Weight to correct biased update due to priority. | |
# If True, priority must be True. | |
priority_IS_weight=False, | |
# (bool) Whether to recompurete advantages in each iteration of on-policy PPO | |
recompute_adv=True, | |
# (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous'] | |
action_space='discrete', | |
# (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value | |
nstep_return=False, | |
# (bool) Whether to enable multi-agent training, i.e.: MAPPO | |
multi_agent=False, | |
# (bool) Whether to need policy data in process transition | |
transition_with_policy_data=True, | |
# (float) The loss weight of the auxiliary model to the main loss. | |
aux_loss_weight=0.001, | |
aux_model=dict( | |
# (int) the encoding size (of each head) to apply contrastive loss. | |
encode_shape=64, | |
# ([int, int]) the heads number of the obs encoding and next_obs encoding respectively. | |
heads=[1, 1], | |
# (str) the contrastive loss type. | |
loss_type='infonce', | |
# (float) a parameter to adjust the polarity between positive and negative samples. | |
temperature=1.0, | |
), | |
# learn_mode config | |
learn=dict( | |
# (int) After collecting n_sample/n_episode data, how many epoches to train models. | |
# Each epoch means the one entire passing of training data. | |
epoch_per_collect=10, | |
# (int) How many samples in a training batch. | |
batch_size=64, | |
# (float) The step size of gradient descent. | |
learning_rate=3e-4, | |
# (float) The loss weight of value network, policy network weight is set to 1. | |
value_weight=0.5, | |
# (float) The loss weight of entropy regularization, policy network weight is set to 1. | |
entropy_weight=0.0, | |
# (float) PPO clip ratio, defaults to 0.2. | |
clip_ratio=0.2, | |
# (bool) Whether to use advantage norm in a whole training batch. | |
adv_norm=True, | |
# (bool) Whether to use value norm with running mean and std in the whole training process. | |
value_norm=True, | |
# (bool) Whether to enable special network parameters initialization scheme in PPO, such as orthogonal init. | |
ppo_param_init=True, | |
# (str) The gradient clip operation type used in PPO, ['clip_norm', clip_value', 'clip_momentum_norm']. | |
grad_clip_type='clip_norm', | |
# (float) The gradient clip target value used in PPO. | |
# If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value. | |
grad_clip_value=0.5, | |
# (bool) Whether ignore done (usually for max step termination env). | |
ignore_done=False, | |
), | |
# collect_mode config | |
collect=dict( | |
# (int) How many training samples collected in one collection procedure. | |
# Only one of [n_sample, n_episode] shoule be set. | |
# n_sample=64, | |
# (int) Cut trajectories into pieces with length "unroll_len". | |
unroll_len=1, | |
# (float) Reward's future discount factor, aka. gamma. | |
discount_factor=0.99, | |
# (float) GAE lambda factor for the balance of bias and variance (1-step td and mc). | |
gae_lambda=0.95, | |
), | |
eval=dict(), # for compability | |
) | |
def _init_learn(self) -> None: | |
""" | |
Overview: | |
Learn mode init method. Called by ``self.__init__``. | |
Init the auxiliary model, its optimizer, and the axuliary loss weight to the main loss. | |
""" | |
super()._init_learn() | |
x_size, y_size = self._get_encoding_size() | |
self._aux_model = ContrastiveLoss(x_size, y_size, **self._cfg.aux_model) | |
if self._cuda: | |
self._aux_model.cuda() | |
self._aux_optimizer = Adam(self._aux_model.parameters(), lr=self._cfg.learn.learning_rate) | |
self._aux_loss_weight = self._cfg.aux_loss_weight | |
def _get_encoding_size(self): | |
""" | |
Overview: | |
Get the input encoding size of the ST-DIM axuiliary model. | |
Returns: | |
- info_dict (:obj:`[Tuple, Tuple]`): The encoding size without the first (Batch) dimension. | |
""" | |
obs = self._cfg.model.obs_shape | |
if isinstance(obs, int): | |
obs = [obs] | |
test_data = { | |
"obs": torch.randn(1, *obs), | |
"next_obs": torch.randn(1, *obs), | |
} | |
if self._cuda: | |
test_data = to_device(test_data, self._device) | |
with torch.no_grad(): | |
x, y = self._model_encode(test_data) | |
return x.size()[1:], y.size()[1:] | |
def _model_encode(self, data): | |
""" | |
Overview: | |
Get the encoding of the main model as input for the auxiliary model. | |
Arguments: | |
- data (:obj:`dict`): Dict type data, same as the _forward_learn input. | |
Returns: | |
- (:obj:`Tuple[Tensor]`): the tuple of two tensors to apply contrastive embedding learning. | |
In ST-DIM algorithm, these two variables are the dqn encoding of `obs` and `next_obs`\ | |
respectively. | |
""" | |
assert hasattr(self._model, "encoder") | |
x = self._model.encoder(data["obs"]) | |
y = self._model.encoder(data["next_obs"]) | |
return x, y | |
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Overview: | |
Forward and backward function of learn mode. | |
Arguments: | |
- data (:obj:`dict`): Dict type data | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): | |
Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \ | |
adv_abs_max, approx_kl, clipfrac | |
""" | |
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False) | |
if self._cuda: | |
data = to_device(data, self._device) | |
# ==================== | |
# PPO forward | |
# ==================== | |
return_infos = [] | |
self._learn_model.train() | |
for epoch in range(self._cfg.learn.epoch_per_collect): | |
if self._recompute_adv: # calculate new value using the new updated value network | |
with torch.no_grad(): | |
value = self._learn_model.forward(data['obs'], mode='compute_critic')['value'] | |
next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value'] | |
if self._value_norm: | |
value *= self._running_mean_std.std | |
next_value *= self._running_mean_std.std | |
traj_flag = data.get('traj_flag', None) # traj_flag indicates termination of trajectory | |
compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], traj_flag) | |
data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda) | |
unnormalized_returns = value + data['adv'] | |
if self._value_norm: | |
data['value'] = value / self._running_mean_std.std | |
data['return'] = unnormalized_returns / self._running_mean_std.std | |
self._running_mean_std.update(unnormalized_returns.cpu().numpy()) | |
else: | |
data['value'] = value | |
data['return'] = unnormalized_returns | |
else: # don't recompute adv | |
if self._value_norm: | |
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std | |
data['return'] = unnormalized_return / self._running_mean_std.std | |
self._running_mean_std.update(unnormalized_return.cpu().numpy()) | |
else: | |
data['return'] = data['adv'] + data['value'] | |
for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): | |
# ====================== | |
# Auxiliary model update | |
# ====================== | |
# RL network encoding | |
# To train the auxiliary network, the gradients of x, y should be 0. | |
with torch.no_grad(): | |
x_no_grad, y_no_grad = self._model_encode(batch) | |
# the forward function of the auxiliary network | |
self._aux_model.train() | |
aux_loss_learn = self._aux_model.forward(x_no_grad, y_no_grad) | |
# the BP process of the auxiliary network | |
self._aux_optimizer.zero_grad() | |
aux_loss_learn.backward() | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._aux_model) | |
self._aux_optimizer.step() | |
output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic') | |
adv = batch['adv'] | |
if self._adv_norm: | |
# Normalize advantage in a train_batch | |
adv = (adv - adv.mean()) / (adv.std() + 1e-8) | |
# Calculate ppo loss | |
if self._action_space == 'continuous': | |
ppo_batch = ppo_data( | |
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
batch['return'], batch['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error_continuous(ppo_batch, self._clip_ratio) | |
elif self._action_space == 'discrete': | |
ppo_batch = ppo_data( | |
output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv, | |
batch['return'], batch['weight'] | |
) | |
ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio) | |
# ====================== | |
# Compute auxiliary loss | |
# ====================== | |
# In total_loss BP, the gradients of x, y are required to update the encoding network. | |
# The auxiliary network won't be updated since the self._optimizer does not contain | |
# its weights. | |
x, y = self._model_encode(data) | |
self._aux_model.eval() | |
aux_loss_eval = self._aux_model.forward(x, y) * self._aux_loss_weight | |
wv, we = self._value_weight, self._entropy_weight | |
total_loss = ppo_loss.policy_loss + wv * ppo_loss.value_loss - we * ppo_loss.entropy_loss\ | |
+ aux_loss_eval | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
self._optimizer.step() | |
return_info = { | |
'cur_lr': self._optimizer.defaults['lr'], | |
'total_loss': total_loss.item(), | |
'aux_loss_learn': aux_loss_learn.item(), | |
'aux_loss_eval': aux_loss_eval.item(), | |
'policy_loss': ppo_loss.policy_loss.item(), | |
'value_loss': ppo_loss.value_loss.item(), | |
'entropy_loss': ppo_loss.entropy_loss.item(), | |
'adv_max': adv.max().item(), | |
'adv_mean': adv.mean().item(), | |
'value_mean': output['value'].mean().item(), | |
'value_max': output['value'].max().item(), | |
'approx_kl': ppo_info.approx_kl, | |
'clipfrac': ppo_info.clipfrac, | |
} | |
if self._action_space == 'continuous': | |
return_info.update( | |
{ | |
'act': batch['action'].float().mean().item(), | |
'mu_mean': output['logit']['mu'].mean().item(), | |
'sigma_mean': output['logit']['sigma'].mean().item(), | |
} | |
) | |
return_infos.append(return_info) | |
return return_infos | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
""" | |
Overview: | |
Return the state_dict of learn mode, usually including model, optimizer and aux_optimizer for \ | |
representation learning. | |
Returns: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring. | |
""" | |
return { | |
'model': self._learn_model.state_dict(), | |
'optimizer': self._optimizer.state_dict(), | |
'aux_optimizer': self._aux_optimizer.state_dict(), | |
} | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
""" | |
Overview: | |
Load the state_dict variable into policy learn mode. | |
Arguments: | |
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before. | |
.. tip:: | |
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ | |
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ | |
complicated operation. | |
""" | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._optimizer.load_state_dict(state_dict['optimizer']) | |
self._aux_optimizer.load_state_dict(state_dict['aux_optimizer']) | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ | |
as text logger, tensorboard logger, will use these keys to save the corresponding data. | |
Returns: | |
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. | |
""" | |
return super()._monitor_vars_learn() + ["aux_loss_learn", "aux_loss_eval"] | |