zjowowen's picture
init space
3dfe8fb
raw
history blame contribute delete
9.03 kB
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import torch.nn as nn
from ding.torch_utils import Adam, to_device
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
FootballKaggle5thPlaceModel = None
@POLICY_REGISTRY.register('IL')
class ILPolicy(Policy):
r"""
Overview:
Policy class of Imitation learning algorithm
Interface:
__init__, set_setting, __repr__, state_dict_handle
Property:
learn_mode, collect_mode, eval_mode
"""
config = dict(
type='IL',
cuda=True,
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same)
on_policy=False,
priority=False,
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
learn=dict(
# (int) collect n_episode data, train model n_iteration time
update_per_collect=20,
# (int) the number of data for a train iteration
batch_size=64,
# (float) gradient-descent step size
learning_rate=0.0002,
),
collect=dict(
# (int) collect n_sample data, train model n_iteration time
# n_sample=128,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.99,
),
eval=dict(evaluator=dict(eval_freq=800, ), ),
other=dict(
replay_buffer=dict(
replay_buffer_size=100000,
# (int) max use count of data, if count is bigger than this value,
# the data will be removed from buffer
max_reuse=10,
),
command=dict(),
),
)
# TODO different collect model and learn model
def default_model(self) -> Tuple[str, List[str]]:
return 'football_iql', ['dizoo.gfootball.model.iql.iql_network']
def _init_learn(self) -> None:
r"""
Overview:
Learn mode init method. Called by ``self.__init__``.
Init optimizers, algorithm config, main and target models.
"""
# actor and critic optimizer
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
# main and target models
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.train()
self._learn_model.reset()
self._forward_learn_cnt = 0 # count iterations
def _forward_learn(self, data: dict) -> Dict[str, Any]:
r"""
Overview:
Forward and backward function of learn mode.
Arguments:
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs']
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including at least actor and critic lr, different losses.
"""
data = default_collate(data, cat_1dim=False)
data['done'] = None
if self._cuda:
data = to_device(data, self._device)
loss_dict = {}
# ====================
# imitation learn forward
# ====================
obs = data.get('obs')
logit = data.get('logit')
assert isinstance(obs['processed_obs'], torch.Tensor), obs['processed_obs']
model_action_logit = self._learn_model.forward(obs['processed_obs'])['logit']
supervised_loss = nn.MSELoss(reduction='none')(model_action_logit, logit).mean()
self._optimizer.zero_grad()
supervised_loss.backward()
self._optimizer.step()
loss_dict['supervised_loss'] = supervised_loss
return {
'cur_lr': self._optimizer.defaults['lr'],
**loss_dict,
}
def _state_dict_learn(self) -> Dict[str, Any]:
return {
'model': self._learn_model.state_dict(),
'optimizer': self._optimizer.state_dict(),
}
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
self._learn_model.load_state_dict(state_dict['model'])
self._optimizer.load_state_dict(state_dict['optimizer'])
def _init_collect(self) -> None:
r"""
Overview:
Collect mode init method. Called by ``self.__init__``.
Init traj and unroll length, collect model.
"""
self._collect_model = model_wrap(FootballKaggle5thPlaceModel(), wrapper_name='base')
self._gamma = self._cfg.collect.discount_factor
self._collect_model.eval()
self._collect_model.reset()
def _forward_collect(self, data: dict) -> dict:
r"""
Overview:
Forward function of collect mode.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs.
ReturnsKeys
- necessary: ``action``
- optional: ``logit``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
with torch.no_grad():
output = self._collect_model.forward(default_decollate(data['obs']['raw_obs']))
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]:
r"""
Overview:
Generate dict type transition data from inputs.
Arguments:
- obs (:obj:`Any`): Env observation
- model_output (:obj:`dict`): Output of collect model, including at least ['action']
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \
(here 'obs' indicates obs after env step, i.e. next_obs).
Return:
- transition (:obj:`Dict[str, Any]`): Dict type transition data.
"""
transition = {
'obs': obs,
'action': model_output['action'],
'logit': model_output['logit'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, origin_data: list) -> Union[None, List[Any]]:
datas = []
pre_rew = 0
for i in range(len(origin_data) - 1, -1, -1):
data = {}
data['obs'] = origin_data[i]['obs']
data['action'] = origin_data[i]['action']
cur_rew = origin_data[i]['reward']
pre_rew = cur_rew + (pre_rew * self._gamma)
# sample uniformly
data['priority'] = 1
data['logit'] = origin_data[i]['logit']
datas.append(data)
return datas
def _init_eval(self) -> None:
r"""
Overview:
Evaluate mode init method. Called by ``self.__init__``.
Init eval model. Unlike learn and collect model, eval model does not need noise.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: dict) -> dict:
r"""
Overview:
Forward function of eval mode, similar to ``self._forward_collect``.
Arguments:
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer.
Returns:
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env.
ReturnsKeys
- necessary: ``action``
- optional: ``logit``
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
with torch.no_grad():
output = self._eval_model.forward(data['obs']['processed_obs'])
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
r"""
Overview:
Return variables' name if variables are to used in monitor.
Returns:
- vars (:obj:`List[str]`): Variables' name list.
"""
return ['cur_lr', 'supervised_loss']