Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Tuple, Union | |
from collections import namedtuple | |
import torch | |
import torch.nn as nn | |
from ding.torch_utils import Adam, to_device | |
from ding.model import model_wrap | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate, default_decollate | |
from .base_policy import Policy | |
FootballKaggle5thPlaceModel = None | |
class ILPolicy(Policy): | |
r""" | |
Overview: | |
Policy class of Imitation learning algorithm | |
Interface: | |
__init__, set_setting, __repr__, state_dict_handle | |
Property: | |
learn_mode, collect_mode, eval_mode | |
""" | |
config = dict( | |
type='IL', | |
cuda=True, | |
# (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) | |
on_policy=False, | |
priority=False, | |
# (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True. | |
priority_IS_weight=False, | |
learn=dict( | |
# (int) collect n_episode data, train model n_iteration time | |
update_per_collect=20, | |
# (int) the number of data for a train iteration | |
batch_size=64, | |
# (float) gradient-descent step size | |
learning_rate=0.0002, | |
), | |
collect=dict( | |
# (int) collect n_sample data, train model n_iteration time | |
# n_sample=128, | |
# (float) discount factor for future reward, defaults int [0, 1] | |
discount_factor=0.99, | |
), | |
eval=dict(evaluator=dict(eval_freq=800, ), ), | |
other=dict( | |
replay_buffer=dict( | |
replay_buffer_size=100000, | |
# (int) max use count of data, if count is bigger than this value, | |
# the data will be removed from buffer | |
max_reuse=10, | |
), | |
command=dict(), | |
), | |
) | |
# TODO different collect model and learn model | |
def default_model(self) -> Tuple[str, List[str]]: | |
return 'football_iql', ['dizoo.gfootball.model.iql.iql_network'] | |
def _init_learn(self) -> None: | |
r""" | |
Overview: | |
Learn mode init method. Called by ``self.__init__``. | |
Init optimizers, algorithm config, main and target models. | |
""" | |
# actor and critic optimizer | |
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) | |
# main and target models | |
self._learn_model = model_wrap(self._model, wrapper_name='base') | |
self._learn_model.train() | |
self._learn_model.reset() | |
self._forward_learn_cnt = 0 # count iterations | |
def _forward_learn(self, data: dict) -> Dict[str, Any]: | |
r""" | |
Overview: | |
Forward and backward function of learn mode. | |
Arguments: | |
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs'] | |
Returns: | |
- info_dict (:obj:`Dict[str, Any]`): Including at least actor and critic lr, different losses. | |
""" | |
data = default_collate(data, cat_1dim=False) | |
data['done'] = None | |
if self._cuda: | |
data = to_device(data, self._device) | |
loss_dict = {} | |
# ==================== | |
# imitation learn forward | |
# ==================== | |
obs = data.get('obs') | |
logit = data.get('logit') | |
assert isinstance(obs['processed_obs'], torch.Tensor), obs['processed_obs'] | |
model_action_logit = self._learn_model.forward(obs['processed_obs'])['logit'] | |
supervised_loss = nn.MSELoss(reduction='none')(model_action_logit, logit).mean() | |
self._optimizer.zero_grad() | |
supervised_loss.backward() | |
self._optimizer.step() | |
loss_dict['supervised_loss'] = supervised_loss | |
return { | |
'cur_lr': self._optimizer.defaults['lr'], | |
**loss_dict, | |
} | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
return { | |
'model': self._learn_model.state_dict(), | |
'optimizer': self._optimizer.state_dict(), | |
} | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
self._learn_model.load_state_dict(state_dict['model']) | |
self._optimizer.load_state_dict(state_dict['optimizer']) | |
def _init_collect(self) -> None: | |
r""" | |
Overview: | |
Collect mode init method. Called by ``self.__init__``. | |
Init traj and unroll length, collect model. | |
""" | |
self._collect_model = model_wrap(FootballKaggle5thPlaceModel(), wrapper_name='base') | |
self._gamma = self._cfg.collect.discount_factor | |
self._collect_model.eval() | |
self._collect_model.reset() | |
def _forward_collect(self, data: dict) -> dict: | |
r""" | |
Overview: | |
Forward function of collect mode. | |
Arguments: | |
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. | |
ReturnsKeys | |
- necessary: ``action`` | |
- optional: ``logit`` | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
with torch.no_grad(): | |
output = self._collect_model.forward(default_decollate(data['obs']['raw_obs'])) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]: | |
r""" | |
Overview: | |
Generate dict type transition data from inputs. | |
Arguments: | |
- obs (:obj:`Any`): Env observation | |
- model_output (:obj:`dict`): Output of collect model, including at least ['action'] | |
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ | |
(here 'obs' indicates obs after env step, i.e. next_obs). | |
Return: | |
- transition (:obj:`Dict[str, Any]`): Dict type transition data. | |
""" | |
transition = { | |
'obs': obs, | |
'action': model_output['action'], | |
'logit': model_output['logit'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
return transition | |
def _get_train_sample(self, origin_data: list) -> Union[None, List[Any]]: | |
datas = [] | |
pre_rew = 0 | |
for i in range(len(origin_data) - 1, -1, -1): | |
data = {} | |
data['obs'] = origin_data[i]['obs'] | |
data['action'] = origin_data[i]['action'] | |
cur_rew = origin_data[i]['reward'] | |
pre_rew = cur_rew + (pre_rew * self._gamma) | |
# sample uniformly | |
data['priority'] = 1 | |
data['logit'] = origin_data[i]['logit'] | |
datas.append(data) | |
return datas | |
def _init_eval(self) -> None: | |
r""" | |
Overview: | |
Evaluate mode init method. Called by ``self.__init__``. | |
Init eval model. Unlike learn and collect model, eval model does not need noise. | |
""" | |
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') | |
self._eval_model.reset() | |
def _forward_eval(self, data: dict) -> dict: | |
r""" | |
Overview: | |
Forward function of eval mode, similar to ``self._forward_collect``. | |
Arguments: | |
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ | |
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. | |
Returns: | |
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. | |
ReturnsKeys | |
- necessary: ``action`` | |
- optional: ``logit`` | |
""" | |
data_id = list(data.keys()) | |
data = default_collate(list(data.values())) | |
if self._cuda: | |
data = to_device(data, self._device) | |
with torch.no_grad(): | |
output = self._eval_model.forward(data['obs']['processed_obs']) | |
if self._cuda: | |
output = to_device(output, 'cpu') | |
output = default_decollate(output) | |
return {i: d for i, d in zip(data_id, output)} | |
def _monitor_vars_learn(self) -> List[str]: | |
r""" | |
Overview: | |
Return variables' name if variables are to used in monitor. | |
Returns: | |
- vars (:obj:`List[str]`): Variables' name list. | |
""" | |
return ['cur_lr', 'supervised_loss'] | |