Spaces:
Sleeping
Sleeping
File size: 14,015 Bytes
3dfe8fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
// This code is a Python extension implemented in C++ using the pybind11 library.
// It's a Monte Carlo Tree Search (MCTS) algorithm with modifications based on Google's AlphaZero paper.
// MCTS is an algorithm for making optimal decisions in a certain class of combinatorial problems.
// It's most famously used in board games like chess, Go, and shogi.
// The following lines include the necessary headers to facilitate the implementation of the MCTS algorithm.
#include "node_alphazero.h"
#include <cmath>
#include <map>
#include <random>
#include <vector>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <functional>
#include <iostream>
#include <memory>
#include <numeric>
// This line creates an alias for the pybind11 namespace, making it easier to reference in the code.
namespace py = pybind11;
// This part defines the MCTS class and its member variables.
// The MCTS class implements the MCTS algorithm, and its member variables store configuration values used in the algorithm.
class MCTS {
int max_moves;
int num_simulations;
double pb_c_base;
double pb_c_init;
double root_dirichlet_alpha;
double root_noise_weight;
py::object simulate_env;
// This part defines the constructor of the MCTS class.
// The constructor initializes the member variables with the provided arguments or with their default values.
public:
MCTS(int max_moves=512, int num_simulations=800,
double pb_c_base=19652, double pb_c_init=1.25,
double root_dirichlet_alpha=0.3, double root_noise_weight=0.25, py::object simulate_env=py::none())
: max_moves(max_moves), num_simulations(num_simulations),
pb_c_base(pb_c_base), pb_c_init(pb_c_init),
root_dirichlet_alpha(root_dirichlet_alpha),
root_noise_weight(root_noise_weight),
simulate_env(simulate_env) {}
// This function calculates the Upper Confidence Bound (UCB) score for a given node in the MCTS tree based on the parent node's visit count,
// the child node's visit count, and the child node's prior probability.
double _ucb_score(Node* parent, Node* child) {
double pb_c = std::log((parent->visit_count + pb_c_base + 1) / pb_c_base) + pb_c_init;
pb_c *= std::sqrt(parent->visit_count) / (child->visit_count + 1);
double prior_score = pb_c * child->prior_p;
double value_score = child->get_value();
return prior_score + value_score;
}
// This function adds Dirichlet noise to the prior probabilities of the actions of a given node to encourage exploration.
void _add_exploration_noise(Node* node) {
std::vector<int> actions;
for (const auto& kv : node->children) {
actions.push_back(kv.first);
}
std::default_random_engine generator;
std::gamma_distribution<double> distribution(root_dirichlet_alpha, 1.0);
std::vector<double> noise;
double sum = 0;
for (size_t i = 0; i < actions.size(); ++i) {
double sample = distribution(generator);
noise.push_back(sample);
sum += sample;
}
// Normalize the samples to simulate a Dirichlet distribution
for (size_t i = 0; i < noise.size(); ++i) {
noise[i] /= sum;
}
double frac = root_noise_weight;
for (size_t i = 0; i < actions.size(); ++i) {
node->children[actions[i]]->prior_p = node->children[actions[i]]->prior_p * (1 - frac) + noise[i] * frac;
}
}
// This function selects the child of a given node that has the highest UCB score among the legal actions.
std::pair<int, Node*> _select_child(Node* node, py::object simulate_env) {
int action = -1;
Node* child = nullptr;
double best_score = -9999999;
for (const auto& kv : node->children) {
int action_tmp = kv.first;
Node* child_tmp = kv.second;
py::list legal_actions_py = simulate_env.attr("legal_actions").cast<py::list>();
std::vector<int> legal_actions;
for (py::handle h : legal_actions_py) {
legal_actions.push_back(h.cast<int>());
}
if (std::find(legal_actions.begin(), legal_actions.end(), action_tmp) != legal_actions.end()) {
double score = _ucb_score(node, child_tmp);
if (score > best_score) {
best_score = score;
action = action_tmp;
child = child_tmp;
}
}
}
if (child == nullptr) {
child = node;
}
return std::make_pair(action, child);
}
// This function expands a leaf node by generating its children based on the legal actions and their prior probabilities.
double _expand_leaf_node(Node* node, py::object simulate_env, py::object policy_value_func) {
std::map<int, double> action_probs_dict;
double leaf_value;
py::tuple result = policy_value_func(simulate_env);
action_probs_dict = result[0].cast<std::map<int, double>>();
leaf_value = result[1].cast<double>();
py::list legal_actions_list = simulate_env.attr("legal_actions").cast<py::list>();
std::vector<int> legal_actions = legal_actions_list.cast<std::vector<int>>();
for (const auto& kv : action_probs_dict) {
int action = kv.first;
double prior_p = kv.second;
if (std::find(legal_actions.begin(), legal_actions.end(), action) != legal_actions.end()) {
node->children[action] = new Node(node, prior_p);
}
}
return leaf_value;
}
// This function returns the next action to take and the probabilities of each action based on the current state and the policy-value function.
std::pair<int, std::vector<double>> get_next_action(py::object state_config_for_env_reset, py::object policy_value_func, double temperature, bool sample) {
Node* root = new Node();
py::object init_state = state_config_for_env_reset["init_state"];
if (!init_state.is_none()) {
init_state = py::bytes(init_state.attr("tobytes")());
}
py::object katago_game_state = state_config_for_env_reset["katago_game_state"];
if (!katago_game_state.is_none()) {
// TODO(pu): polish efficiency
katago_game_state = py::module::import("pickle").attr("dumps")(katago_game_state);
}
simulate_env.attr("reset")(
state_config_for_env_reset["start_player_index"].cast<int>(),
init_state,
state_config_for_env_reset["katago_policy_init"].cast<bool>(),
katago_game_state
);
_expand_leaf_node(root, simulate_env, policy_value_func);
if (sample) {
_add_exploration_noise(root);
}
for (int n = 0; n < num_simulations; ++n) {
simulate_env.attr("reset")(
state_config_for_env_reset["start_player_index"].cast<int>(),
init_state,
state_config_for_env_reset["katago_policy_init"].cast<bool>(),
katago_game_state
);
simulate_env.attr("battle_mode") = simulate_env.attr("battle_mode_in_simulation_env");
_simulate(root, simulate_env, policy_value_func);
}
std::vector<std::pair<int, int>> action_visits;
for (int action = 0; action < simulate_env.attr("action_space").attr("n").cast<int>(); ++action) {
if (root->children.count(action)) {
action_visits.push_back(std::make_pair(action, root->children[action]->visit_count));
} else {
action_visits.push_back(std::make_pair(action, 0));
}
}
// Convert 'action_visits' into two separate arrays.
std::vector<int> actions;
std::vector<int> visits;
for (const auto& av : action_visits) {
actions.push_back(av.first);
visits.push_back(av.second);
}
std::vector<double> visits_d(visits.begin(), visits.end());
std::vector<double> action_probs = visit_count_to_action_distribution(visits_d, temperature);
int action;
if (sample) {
action = random_choice(actions, action_probs);
} else {
action = actions[std::distance(action_probs.begin(), std::max_element(action_probs.begin(), action_probs.end()))];
}
return std::make_pair(action, action_probs);
}
// This function performs a simulation from a given node until a leaf node is reached or a terminal state is reached.
void _simulate(Node* node, py::object simulate_env, py::object policy_value_func) {
while (!node->is_leaf()) {
int action;
std::tie(action, node) = _select_child(node, simulate_env);
if (action == -1) {
break;
}
simulate_env.attr("step")(action);
}
bool done;
int winner;
py::tuple result = simulate_env.attr("get_done_winner")();
done = result[0].cast<bool>();
winner = result[1].cast<int>();
double leaf_value;
if (!done) {
leaf_value = _expand_leaf_node(node, simulate_env, policy_value_func);
}
else {
if (simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>() == "self_play_mode") {
if (winner == -1) {
leaf_value = 0;
} else {
leaf_value = (simulate_env.attr("current_player").cast<int>() == winner) ? 1 : -1;
}
}
else if (simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>() == "play_with_bot_mode") {
if (winner == -1) {
leaf_value = 0;
} else if (winner == 1) {
leaf_value = 1;
} else if (winner == 2) {
leaf_value = -1;
}
}
}
if (simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>() == "play_with_bot_mode") {
node->update_recursive(leaf_value, simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>());
}
else if (simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>() == "self_play_mode") {
node->update_recursive(-leaf_value, simulate_env.attr("battle_mode_in_simulation_env").cast<std::string>());
}
}
private:
static std::vector<double> visit_count_to_action_distribution(const std::vector<double>& visits, double temperature) {
// Check if temperature is 0
if (temperature == 0) {
throw std::invalid_argument("Temperature cannot be 0");
}
// Check if all visit counts are 0
if (std::all_of(visits.begin(), visits.end(), [](double v){ return v == 0; })) {
throw std::invalid_argument("All visit counts cannot be 0");
}
std::vector<double> normalized_visits(visits.size());
// Divide visit counts by temperature
for (size_t i = 0; i < visits.size(); i++) {
normalized_visits[i] = visits[i] / temperature;
}
// Calculate the sum of all normalized visit counts
double sum = std::accumulate(normalized_visits.begin(), normalized_visits.end(), 0.0);
// Normalize the visit counts
for (double& visit : normalized_visits) {
visit /= sum;
}
return normalized_visits;
}
static std::vector<double> softmax(const std::vector<double>& values, double temperature) {
std::vector<double> exps;
double sum = 0.0;
// Compute the maximum value
double max_value = *std::max_element(values.begin(), values.end());
// Subtract the maximum value before exponentiation, for numerical stability
for (double v : values) {
double exp_v = std::exp((v - max_value) / temperature);
exps.push_back(exp_v);
sum += exp_v;
}
for (double& exp_v : exps) {
exp_v /= sum;
}
return exps;
}
static int random_choice(const std::vector<int>& actions, const std::vector<double>& probs) {
std::random_device rd;
std::mt19937 gen(rd());
std::discrete_distribution<> d(probs.begin(), probs.end());
return actions[d(gen)];
}
};
// This function uses pybind11 to expose the Node and MCTS classes to Python.
// This allows Python code to create and manipulate instances of these classes.
PYBIND11_MODULE(mcts_alphazero, m) {
py::class_<Node>(m, "Node")
.def(py::init([](Node* parent, float prior_p){
return new Node(parent ? parent : nullptr, prior_p);
}), py::arg("parent")=nullptr, py::arg("prior_p")=1.0)
.def_property_readonly("value", &Node::get_value)
.def("update", &Node::update)
.def("update_recursive", &Node::update_recursive)
.def("is_leaf", &Node::is_leaf)
.def("is_root", &Node::is_root)
.def("parent", &Node::get_parent)
.def_readwrite("prior_p", &Node::prior_p)
.def_readwrite("children", &Node::children)
.def("add_child", &Node::add_child)
.def_readwrite("visit_count", &Node::visit_count);
py::class_<MCTS>(m, "MCTS")
.def(py::init<int, int, double, double, double, double, py::object>(),
py::arg("max_moves")=512, py::arg("num_simulations")=800,
py::arg("pb_c_base")=19652, py::arg("pb_c_init")=1.25,
py::arg("root_dirichlet_alpha")=0.3, py::arg("root_noise_weight")=0.25, py::arg("simulate_env"))
.def("_ucb_score", &MCTS::_ucb_score)
.def("_add_exploration_noise", &MCTS::_add_exploration_noise)
.def("_select_child", &MCTS::_select_child)
.def("_expand_leaf_node", &MCTS::_expand_leaf_node)
.def("get_next_action", &MCTS::get_next_action)
.def("_simulate", &MCTS::_simulate);
} |