SpaCy / app.py
OniXinO
base
22986a6
import streamlit as st
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("google/mt5-base", padding_side="left", use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-base")
return tokenizer, model
st.title("Український Чат-бот")
if "history" not in st.session_state:
st.session_state.history = []
if "user_input" not in st.session_state:
st.session_state.user_input = ""
tokenizer, model = load_model()
def send_message():
if st.session_state.user_input:
inputs = tokenizer(st.session_state.history + [st.session_state.user_input], return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.session_state.history.extend([st.session_state.user_input, response])
st.session_state.user_input = ""
def update_user_input():
st.session_state.user_input = st.session_state.temp_user_input
st.text_input("Ви:", key="temp_user_input", on_change=update_user_input)
if st.button("Надіслати"):
send_message()
# Обробка натискання Enter
if st.session_state.get("temp_user_input") and st.session_state.get("last_input", "") != st.session_state.get("temp_user_input"):
st.session_state["last_input"] = st.session_state["temp_user_input"]
send_message()
if st.session_state.history:
for i in range(0, len(st.session_state.history), 2):
st.write(f"Ви: {st.session_state.history[i]}")
if i + 1 < len(st.session_state.history):
st.write(f"Бот: {st.session_state.history[i+1]}")