import gradio as gr import torch import numpy as np import torchvision.transforms.functional as TF from diffusers import AutoencoderKLWan, WanImageToVideoPipeline from diffusers.utils import export_to_video, load_image from transformers import CLIPVisionModel def generate_video(first_frame_url, last_frame_url, prompt): model_id = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers" image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32) vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanImageToVideoPipeline.from_pretrained( "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, keep_in_fp32_modules=True ) pipe.to("cuda") first_frame = load_image(first_frame_url) last_frame = load_image(last_frame_url) def aspect_ratio_resize(image, pipe, max_area=720 * 1280): aspect_ratio = image.height / image.width mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value image = image.resize((width, height)) return image, height, width def center_crop_resize(image, height, width): resize_ratio = max(width / image.width, height / image.height) width = round(image.width * resize_ratio) height = round(image.height * resize_ratio) size = [width, height] image = TF.center_crop(image, size) return image, height, width first_frame, height, width = aspect_ratio_resize(first_frame, pipe) if last_frame.size != first_frame.size: last_frame, _, _ = center_crop_resize(last_frame, height, width) output = pipe( image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.5 ).frames[0] video_path = "wan_output.mp4" export_to_video(output, video_path, fps=16) return video_path iface = gr.Interface( fn=generate_video, inputs=[ gr.Textbox(label="First Frame URL"), gr.Textbox(label="Last Frame URL"), gr.Textbox(label="Prompt") ], outputs=gr.Video(label="Generated Video"), title="Wan2.1 FLF2V Video Generator" ) iface.launch()