File size: 2,473 Bytes
3029c5a
8df2286
 
 
52993e7
a2f8cb5
6344449
0543369
8df2286
 
 
 
 
 
 
 
 
 
6344449
0543369
6344449
ce1a8c0
6344449
0543369
6344449
 
0543369
a2f8cb5
c7283cf
 
3cb3bf4
0543369
 
 
071197c
0543369
 
0feedb8
 
3cb3bf4
0543369
 
8a9c293
0543369
 
 
 
 
8df2286
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
from PIL import Image
import requests 
#from diffusers import DiffusionPipeline
'''
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe = pipe.to("cpu")
url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
def run_fn(img_url):
    init_image = load_image(url).convert("RGB")
    prompt = "a photo of an astronaut riding a horse on mars"
    image = pipe(prompt, image=init_image).images
    return image
'''
device = "cuda" if torch.cuda.is_available() else "cpu"
#pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")

pipe = pipe.to(device)


def resize(value,img):
    img = Image.open(requests.get(img, stream=True).raw)    
    img.save("tmp_im.png")
    img = Image.open("tmp_im.png")
    #img = img.resize((value,value))
    return img

def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
    #source_img = load_image(source_img).convert("RGB")
    
    generator = torch.Generator(device).manual_seed(seed)     
    source_image = resize(768, source_img)
    source_image.save('source.png')
    image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
    return image

gr.Interface(fn=infer, inputs=[gr.Textbox(), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
    gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
    gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
    gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), 
    gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], 
    outputs='image').launch()