Spaces:
Runtime error
Runtime error
File size: 17,340 Bytes
d6afb45 7ee1b98 d6afb45 2a7d1fa 46d853f d0d78a3 2a7d1fa 4c9903a 2a7d1fa 57c61e4 2a7d1fa d0d78a3 2a7d1fa 6033b8d 5e5a176 6033b8d a697fee 7edef00 6033b8d 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa 5039147 2a7d1fa d513153 2a7d1fa acf5be1 2a7d1fa 29fe941 2a7d1fa f7222e9 2a7d1fa 3c41461 2a7d1fa 3c41461 2a7d1fa cd97bbf 2a7d1fa 890838c 2a7d1fa 28de501 2a7d1fa d400fb1 2a7d1fa 7b93d94 2a7d1fa 890838c 2a7d1fa 28de501 2a7d1fa cd97bbf 2a7d1fa cd97bbf 28de501 2a7d1fa 890838c 5cc41a3 890838c 2a7d1fa 4c9903a d0d78a3 4c9903a e116759 4c9903a e116759 4c9903a e116759 4c9903a 0a9e53f 4c9903a e116759 4c9903a 02b4392 4c9903a 890838c 4c9903a cfe6a58 fbffc1b 1a2db9c fbffc1b d0d78a3 2c63529 d0d78a3 2c63529 d0d78a3 49c4317 289e93e c212cdb 289e93e 02b3d4b c212cdb 289e93e 02b3d4b eabbeea af2ae6d eabbeea 091e690 eabbeea 091e690 eabbeea 02b3d4b 6c1c2f5 289e93e 6c1c2f5 289e93e d0d78a3 2a7d1fa d400fb1 2a7d1fa cd97bbf 2a7d1fa 267d21f eb03447 d400fb1 2a7d1fa b56eef2 2a7d1fa eb03447 1a8a73c 2a7d1fa 6a02a37 eb03447 d7d0e74 2a7d1fa af9c428 2a7d1fa d513153 cd97bbf 2a7d1fa cd97bbf 2a7d1fa cd97bbf 2a7d1fa cd97bbf 2a7d1fa 8832566 df4b728 2a7d1fa fc6479b 20cc82f df4b728 98ae583 7b6e1e8 98ae583 f6d283c 98ae583 b960226 98ae583 2a7d1fa eb03447 cd97bbf 2a7d1fa 455d65b cd97bbf 2a7d1fa cd97bbf f586a70 2a7d1fa e1bf925 dc21b34 e1bf925 cd97bbf 4ccf7b4 e1bf925 d7d0e74 e1bf925 5d28c4c cd97bbf e1bf925 4118bca e1bf925 cd97bbf e1bf925 3d1aff1 e1bf925 cd97bbf 3655140 d19f81b 1a8a73c e1bf925 cd97bbf e1bf925 cd97bbf e1bf925 d400fb1 3d1aff1 d400fb1 3d1aff1 e1bf925 ecf81e8 3d1aff1 e1bf925 3d1aff1 562495d fb2354b 3d1aff1 4c9903a 3d1aff1 4c9903a 0022710 4c9903a 3d1aff1 4c9903a 3d1aff1 d0d78a3 e1bf925 3d1aff1 2a7d1fa 1593078 d34c8cc 1593078 2a7d1fa 094ece2 58fbd07 7282311 58fbd07 094ece2 2a7d1fa 3d1aff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import gradio as gr
import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
import uuid
from prompts import (
FINDER,
SAVE_MEMORY,
COMPRESS_HISTORY_PROMPT,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
PREFIX,
TASK_PROMPT,
)
reponame="Omnibus/tmp"
save_data=f'https://huggingface.co/datasets/{reponame}/raw/main/'
token_self = os.environ['HF_TOKEN']
api=HfApi(token=token_self)
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
from gradio_client import Client
client2 = Client("https://omnibus-html-image-current-tab.hf.space/--replicas/strm7/")
def get_screenshot(chat,height=5000,width=600,chatblock=[1],header=True,theme="light",wait=3000):
result = client2.predict(chat,height,width,chatblock,header,theme,wait,api_name="/run_script")
print (result[0])
def parse_action(string: str):
print("PARSING:")
print(string)
assert string.startswith("action:")
idx = string.find("action_input=")
print(idx)
if idx == -1:
print ("idx == -1")
print (string[8:])
return string[8:], None
print ("last return:")
print (string[8 : idx - 1])
print (string[idx + 13 :].strip("'").strip('"'))
return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"')
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
purpose,
**prompt_kwargs,
):
timestamp=datetime.datetime.now()
print(seed)
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose=purpose,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', **prompt_kwargs['history'])
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c,purpose, task, history, result):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
#out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=2048,
seed=seed,
purpose=purpose,
task=task,
knowledge=new_history,
history=hist,
).strip('\n')
new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=2048,
seed=seed,
purpose=purpose,
task=task,
knowledge=new_history,
history=result,
)
'''
print ("final" + resp)
#history = resp
#history = "result: {}\n".format(resp)
return resp
def save_memory(purpose, history):
uid=uuid.uuid4()
history=str(history)
c=0
inp = str(history)
rl = len(inp)
print(f'rl:: {rl}')
for i in str(inp):
if i == " " or i=="," or i=="\n" or i=="/" or i=="." or i=="<":
c +=1
print (f'c:: {c}')
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
#out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
task = f'Index this Data\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = inp[s:e]
resp = run_gpt(
SAVE_MEMORY,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=4096,
seed=seed,
purpose=purpose,
task=task,
knowledge=new_history,
history=hist,
).strip('\n')
new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
print ("final1" + resp)
try:
resp='[{'+resp.split('[{')[1].split('</s>')[0]
print ("final2\n" + resp)
print(f"keywords:: {resp['keywords']}")
except Exception as e:
resp = resp
print(e)
timestamp=str(datetime.datetime.now())
timename=timestamp.replace(" ","--").replace(":","-").replace(".","-")
json_object=resp
#json_object = json.dumps(out_box)
#json_object = json.dumps(out_box,indent=4)
with open(f"tmp-{uid}.json", "w") as outfile:
outfile.write(json_object)
api.upload_file(
path_or_fileobj=f"tmp-{uid}.json",
path_in_repo=f"/mem-test/{timename}.json",
repo_id=reponame,
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
token=token_self,
repo_type="dataset",
)
lines = resp.strip().strip("\n").split("\n")
r = requests.get(f'{save_data}mem-test/main.json')
print(f'status code main:: {r.status_code}')
if r.status_code==200:
lod = json.loads(r.text)
#lod = eval(lod)
print (f'lod:: {lod}')
else:
lod = []
for i,line in enumerate(lines):
key_box=[]
print(f'LINE:: {line}')
if ":" in line:
print(f'line:: {line}')
if "keywords" in line[:16]:
print(f'trying:: {line}')
keyw=line.split(":")[1]
print (keyw)
print (keyw.split("[")[1].split("]")[0])
keyw=keyw.split("[")[1].split("]")[0]
for ea in keyw.split(","):
s1=""
ea=ea.strip().strip("\n")
for ev in ea:
if ev.isalnum():
s1+=ev
if ev == " ":
s1+=ev
#ea=s1
print(s1)
key_box.append(s1)
lod.append({"file_name":timename,"keywords":key_box})
json_object = json.dumps(lod, indent=4)
with open(f"tmp2-{uid}.json", "w") as outfile2:
outfile2.write(json_object)
api.upload_file(
path_or_fileobj=f"tmp2-{uid}.json",
path_in_repo=f"/mem-test/main.json",
repo_id=reponame,
#repo_id=save_data.split('datasets/',1)[1].split('/raw',1)[0],
token=token_self,
repo_type="dataset",
)
return [resp]
def compress_history(purpose, task, history):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=1024,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_main(purpose, task, history, action_input, result):
resp = run_gpt(
FINDER,
stop_tokens=["observation:", "task:"],
max_tokens=2048,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
#history=""
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
if line.startswith("action: "):
action_name, action_input = parse_action(line)
print(f'ACTION::{action_name} -- INPUT :: {action_input}')
#history += "{}\n".format(line)
return action_name, action_input, history, task, result
else:
pass
#history += "{}\n".format(line)
#assert False, "unknown action: {}".format(line)
#return "UPDATE-TASK", None, history, task
if "VERBOSE":
print(history)
return "MAIN", None, history, task, result
def call_set_task(purpose, task, history, action_input, result):
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=1024,
seed=random.randint(1,1000000000),
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task, result
###########################################################
def search_all(url):
source=""
return source
def find_all(purpose,task,history, url, result):
return_list=[]
print (url)
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
if source.status_code ==200:
soup = bs4.BeautifulSoup(source.content,'lxml')
rawp=(f'RAW TEXT RETURNED: {soup.text}')
cnt=0
cnt+=len(rawp)
out.append(rawp)
out.append("HTML fragments: ")
q=("a","p","span","content","article")
for p in soup.find_all("a"):
out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
c=0
out = str(out)
rl = len(out)
print(f'rl:: {rl}')
for i in str(out):
if i == " " or i=="," or i=="\n" or i=="/" or i=="." or i=="<":
c +=1
print (f'c:: {c}')
#if c > MAX_HISTORY:
print("compressing...")
rawp = compress_data(c,purpose,task,out,result)
result += rawp
#else:
# rawp = out
#print (rawp)
#print (f'out:: {out}')
history += "observation: the search results are:\n {}\n".format(rawp)
task = "compile report or complete?"
return "MAIN", None, history, task, result
else:
history += f"observation: That URL string returned an error: {source.status_code}, I should try a different URL string\n"
#result="Still Working..."
return "MAIN", None, history, task, result
else:
history += "observation: An Error occured\nI need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
return "MAIN", None, history, task, result
except Exception as e:
print (e)
history += "observation: I need to trigger a search using the following syntax:\naction: SCRAPE_WEBSITE action_input=URL\n"
return "MAIN", None, history, task, result
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task, result
#################################
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH_ENGINE": find_all,
"SCRAPE_WEBSITE": find_all,
}
def run_action(purpose, task, history, action_name, action_input,result):
if "COMPLETE" in action_name:
print("Complete - Exiting")
#exit(0)
return "COMPLETE", None, history, task, result
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
history = compress_history(purpose, task, history)
if action_name in NAME_TO_FUNC:
assert action_name in NAME_TO_FUNC
print(f"RUN: {action_name} ACTION_INPUT: {action_input}")
return NAME_TO_FUNC[action_name](purpose, task, history, action_input, result)
else:
history += "observation: The TOOL I tried to use returned an error, I need to select a tool from: (UPDATE-TASK, SEARCH_ENGINE, SCRAPE_WEBSITE, COMPLETE)\n"
return "MAIN", None, history, task, result
def run(purpose,history):
yield [(purpose,"Searching...")]
task=None
result=""
#history = ""
if not history:
history = ""
else:
history=str(history)
action_name = "MAIN"
action_input = None
while True:
print("")
print("")
print("---")
#print("purpose:", purpose)
print("task:", task)
print("---")
#print(history)
print("---")
action_name, action_input, history, task, result = run_action(
purpose,
task,
history,
action_name,
action_input,
result
)
if not result:
yield [(purpose,"More Searching...")]
else:
yield [(purpose,result)]
if action_name == "COMPLETE":
break
return [(purpose,result)]
examples =[
"What is the current weather in Florida?",
"Find breaking news about Texas",
"Find the best deals on flippers for scuba diving",
"Teach me to fly a helicopter"
]
def clear_fn():
return None,None
rand_val=random.randint(1,99999999999)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=random.randint(1,99999999999))
else:
return gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=int(val))
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B RPG</h1><h3>Role Playing Game Master</h3>""")
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
chatbot=gr.Chatbot(show_label=False, show_share_button=True, show_copy_button=True, likeable=True, layout="panel", height="800px")
with gr.Row():
with gr.Column(scale=3):
opt=gr.Dropdown(label="Choices",choices=examples,allow_custom_value=True, value="Start a new game", interactive=True)
#prompt=gr.Textbox(label = "Prompt", value="Start a new game")
with gr.Column(scale=2):
rand = gr.Checkbox(label="Random", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=99999999999, value=rand_val)
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
button=gr.Button()
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
tokens = gr.Slider(label="Max new tokens",value=2096,minimum=0,maximum=1048*10,step=64,interactive=False, visible=False,info="The maximum numbers of new tokens")
with gr.Column(scale=1):
save_btn=gr.Button("Save Memory")
snap_btn=gr.Button("Take Screenshot")
char_stats=gr.Textbox()
json_out=gr.JSON()
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
#test_b=test_btn.click(itt,url,e_box)
save_btn.click(save_memory,[opt,chatbot],json_out)
clear_btn.click(clear_fn,None,[opt,chatbot])
#go=button.click(check_rand,[rand,seed],seed).then(run,[opt,chatbot,tokens,char_stats,seed],[chatbot,char_stats,json_out,opt])
go=button.click(check_rand,[rand,seed],seed).then(run,[opt,chatbot],[chatbot])
stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=False)
'''
examples =[
"What is the current weather in Florida?",
"Find breaking news about Texas",
"Find the best deals on flippers for scuba diving",
"Teach me to fly a helicopter"
]
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=True, show_copy_button=True, likeable=True, layout="panel", height="800px"),
title="Mixtral 46.7B Powered <br> Search",
examples=examples,
concurrency_limit=20,
).launch()
'''
|