File size: 7,893 Bytes
a3f8002
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
addc8d1
 
 
 
ec11762
fcfce69
be2d507
 
fcfce69
 
 
 
cae79ad
fcfce69
18ceff9
e5c8ca0
18ceff9
 
fcfce69
 
3797456
7c2be6c
 
18a5c05
be2d507
 
 
3797456
 
 
be2d507
3797456
8af5446
 
 
609e1a5
fcfce69
be2d507
addc8d1
 
 
cfec373
 
fe2ba41
c9d3d56
fe2ba41
 
c9d3d56
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6e690
 
 
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from fastapi import FastAPI, HTTPException,Query
from supabase import create_client, Client
from typing import List, Dict
from statistics import mean
from collections import Counter
import os
from datetime import datetime
import json

app = FastAPI()

# Initialize Supabase client
url: str = os.getenv('SUPABASE_URL')
key: str = os.getenv('SUPABASE_KEY')
supabase: Client = create_client(url, key)



@app.get('/get_travel_data')
async def get_user_travel_data(hushh_id:str):
    resp = supabase.table("receipt_radar_structured_data_duplicate").select("metadata,message_id,logo,company").eq("brand_category","Travel").eq('user_id',hushh_id).execute()
    print(resp.data)
    data = {}
    arrival_location_frequency = {}
    for msg in resp.data:
        print(msg)
        date = msg.get('Date')
        if msg.get('metadata') is not None and msg.get('metadata') != 'null':
            ds = json.loads(msg.get('metadata'))
            arrival_date = ds.get('arrival_date') or  date
            travel_type = ds.get('travel_type',None)
            if ds.get('travel_type') == 'null' or travel_type is None:
                continue
            
            departure_destination = ds.get('departure_destination') if ds.get('departure_destination') is not None else None
            arrival_destination = ds.get('arrival_destination') if ds.get('arrival_destination') is not None else None
            arrival_city = ds.get('arrival_city') if ds.get('arrival_city') is not None else None
            if 'travel_history' not in data:
                data['travel_history'] = []
            data['travel_history'].append({"message_id":msg.get('message_id'),"domain":msg.get('company'),"logo":msg.get('logo'),'arrival_date':arrival_date,'travel_type':travel_type,'departure_destination':departure_destination,'arrival_destination':arrival_destination})
            print('Data')
            print(data)
                    # Increment arrival_location_frequency count for the current arrival_destination
            if arrival_city:
                if arrival_city in arrival_location_frequency:
                    arrival_location_frequency[arrival_city] += 1
                else:
                    arrival_location_frequency[arrival_city] = 1
            sorted_arrival_location_frequency = dict(
            sorted(arrival_location_frequency.items(), key=lambda item: item[1], reverse=True)
            )
            data['arrival_location_frequency'] = sorted_arrival_location_frequency
            
    return data





@app.get("/travel-analytics")
async def get_travel_analytics(user_id: str = Query(..., description="User's hush ID")):
    try:
        # Fetch data from Supabase
        response = supabase.table("receipt_radar_structured_data_duplicate_duplicate").select("metadata, total_cost, brand_category").eq('user_id',user_id).execute()
        
        # Extract metadata from the response
        metadata_list: List[Dict] = [json.loads(row['metadata']) for row in response.data if row['metadata']]
        total_costs = [float(row['total_cost']) for row in response.data if row.get('total_cost')]
        print(metadata_list)
        print(total_costs)
        # Initialize variables for analytics
        total_trips = len(metadata_list)
        trip_durations = []
        domestic_trips = 0
        international_trips = 0
        destination_types = Counter()
        booking_lead_times = []
        accommodation_spending = []
        transport_spending = []
        activities_spending = []
        domestic_departure_countries = Counter()
        international_departure_countries = Counter()
        domestic_arrival_countries = Counter()
        international_arrival_countries = Counter()
        all_dates = []
        
        # Process each metadata entry
        for metadata in metadata_list:
            # Trip duration
            if 'check_in_date' in metadata and 'check_out_date' in metadata:
                print("inside 1st")
                check_in_date = metadata['check_in_date']
                check_out_date = metadata['check_out_date']
                duration = (check_out_date - check_in_date).days
                trip_durations.append(duration)
                all_dates.append(check_in_date)
                all_dates.append(check_out_date)
            
            # Domestic vs International
            if 'departure_country' in metadata and 'arrival_country' in metadata:
                print("inside 2nd")
                departure_country = metadata['departure_country']
                arrival_country = metadata['arrival_country']
                
                if departure_country == arrival_country:
                    print("inside 2nd")
                    domestic_trips += 1
                    domestic_departure_countries[departure_country] += 1
                    domestic_arrival_countries[arrival_country] += 1
                else:
                    international_trips += 1
                    international_departure_countries[departure_country] += 1
                    international_arrival_countries[arrival_country] += 1
            
            # Destination type (simplified)
            if 'destination_type' in metadata:
                print("inside 3rd")
                destination_types[metadata['destination_type']] += 1
            
            # Booking lead time
            if 'date_of_purchase' in metadata and 'departure_date' in metadata:
                print("inside 4th")
                lead_time = (datetime.strptime(metadata['departure_date'],"%d-%m-%Y") - datetime.strptime(metadata['date_of_purchase'],"%d-%m-%Y")).days
                booking_lead_times.append(lead_time)
            
            # Spending
            if 'accommodation_cost' in metadata:
                accommodation_spending.append(metadata['accommodation_cost'])
            if 'transport_cost' in metadata:
                transport_spending.append(metadata['transport_cost'])
            if 'activities_cost' in metadata:
                activities_spending.append(metadata['activities_cost'])
        
        # Calculate the number of years covered by the data
        if all_dates:
            min_date = min(all_dates)
            max_date = max(all_dates)
            date_range_years = (max_date - min_date).days / 365.25
        else:
            date_range_years = 1  # Default to 1 year if no dates are available
        
        # Calculate analytics
        analytics = {
            "travel_frequency": {
                "trips_per_year": total_trips / date_range_years,
                "average_trip_duration": mean(trip_durations) if trip_durations else None,
                "domestic_vs_international": f"{domestic_trips}:{international_trips}",
                "domestic_departure_countries": dict(domestic_departure_countries),
                "international_departure_countries": dict(international_departure_countries),
                "domestic_arrival_countries": dict(domestic_arrival_countries),
                "international_arrival_countries": dict(international_arrival_countries),
            },
            # "destination_preferences": {
            #     "popular_types": dict(destination_types.most_common(5))
            # },
            "booking_patterns": {
                "average_lead_time": mean(booking_lead_times) if booking_lead_times else None
            },
            "travel_expenditure": {
                "average_accommodation_cost": mean(accommodation_spending) if accommodation_spending else None,
                "average_transport_cost": mean(transport_spending) if transport_spending else None,
                "average_activities_cost": mean(activities_spending) if activities_spending else None
            }
        }
        
        return analytics
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))