File size: 5,860 Bytes
a3f8002
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
addc8d1
 
 
 
 
 
 
 
 
fe2ba41
c9d3d56
fe2ba41
 
c9d3d56
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6e690
 
 
fe2ba41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from fastapi import FastAPI, HTTPException,Query
from supabase import create_client, Client
from typing import List, Dict
from statistics import mean
from collections import Counter
import os
from datetime import datetime
import json

app = FastAPI()

# Initialize Supabase client
url: str = os.getenv('SUPABASE_URL')
key: str = os.getenv('SUPABASE_KEY')
supabase: Client = create_client(url, key)



@app.get('/get_travel_data')
async def get_user_travel_data(hushh_id:str):
    
    pass



@app.get("/travel-analytics")
async def get_travel_analytics(user_id: str = Query(..., description="User's hush ID")):
    try:
        # Fetch data from Supabase
        response = supabase.table("receipt_radar_structured_data_duplicate_duplicate").select("metadata, total_cost, brand_category").eq('user_id',user_id).execute()
        
        # Extract metadata from the response
        metadata_list: List[Dict] = [json.loads(row['metadata']) for row in response.data if row['metadata']]
        total_costs = [float(row['total_cost']) for row in response.data if row.get('total_cost')]
        print(metadata_list)
        print(total_costs)
        # Initialize variables for analytics
        total_trips = len(metadata_list)
        trip_durations = []
        domestic_trips = 0
        international_trips = 0
        destination_types = Counter()
        booking_lead_times = []
        accommodation_spending = []
        transport_spending = []
        activities_spending = []
        domestic_departure_countries = Counter()
        international_departure_countries = Counter()
        domestic_arrival_countries = Counter()
        international_arrival_countries = Counter()
        all_dates = []
        
        # Process each metadata entry
        for metadata in metadata_list:
            # Trip duration
            if 'check_in_date' in metadata and 'check_out_date' in metadata:
                print("inside 1st")
                check_in_date = metadata['check_in_date']
                check_out_date = metadata['check_out_date']
                duration = (check_out_date - check_in_date).days
                trip_durations.append(duration)
                all_dates.append(check_in_date)
                all_dates.append(check_out_date)
            
            # Domestic vs International
            if 'departure_country' in metadata and 'arrival_country' in metadata:
                print("inside 2nd")
                departure_country = metadata['departure_country']
                arrival_country = metadata['arrival_country']
                
                if departure_country == arrival_country:
                    print("inside 2nd")
                    domestic_trips += 1
                    domestic_departure_countries[departure_country] += 1
                    domestic_arrival_countries[arrival_country] += 1
                else:
                    international_trips += 1
                    international_departure_countries[departure_country] += 1
                    international_arrival_countries[arrival_country] += 1
            
            # Destination type (simplified)
            if 'destination_type' in metadata:
                print("inside 3rd")
                destination_types[metadata['destination_type']] += 1
            
            # Booking lead time
            if 'date_of_purchase' in metadata and 'departure_date' in metadata:
                print("inside 4th")
                lead_time = (datetime.strptime(metadata['departure_date'],"%d-%m-%Y") - datetime.strptime(metadata['date_of_purchase'],"%d-%m-%Y")).days
                booking_lead_times.append(lead_time)
            
            # Spending
            if 'accommodation_cost' in metadata:
                accommodation_spending.append(metadata['accommodation_cost'])
            if 'transport_cost' in metadata:
                transport_spending.append(metadata['transport_cost'])
            if 'activities_cost' in metadata:
                activities_spending.append(metadata['activities_cost'])
        
        # Calculate the number of years covered by the data
        if all_dates:
            min_date = min(all_dates)
            max_date = max(all_dates)
            date_range_years = (max_date - min_date).days / 365.25
        else:
            date_range_years = 1  # Default to 1 year if no dates are available
        
        # Calculate analytics
        analytics = {
            "travel_frequency": {
                "trips_per_year": total_trips / date_range_years,
                "average_trip_duration": mean(trip_durations) if trip_durations else None,
                "domestic_vs_international": f"{domestic_trips}:{international_trips}",
                "domestic_departure_countries": dict(domestic_departure_countries),
                "international_departure_countries": dict(international_departure_countries),
                "domestic_arrival_countries": dict(domestic_arrival_countries),
                "international_arrival_countries": dict(international_arrival_countries),
            },
            # "destination_preferences": {
            #     "popular_types": dict(destination_types.most_common(5))
            # },
            "booking_patterns": {
                "average_lead_time": mean(booking_lead_times) if booking_lead_times else None
            },
            "travel_expenditure": {
                "average_accommodation_cost": mean(accommodation_spending) if accommodation_spending else None,
                "average_transport_cost": mean(transport_spending) if transport_spending else None,
                "average_activities_cost": mean(activities_spending) if activities_spending else None
            }
        }
        
        return analytics
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))