Spaces:
Running
Running
from fastapi import FastAPI | |
# from core.init_nlp import initialize_nlp | |
from contextlib import asynccontextmanager | |
import logging | |
from api.endpoints import location | |
from transformers import AutoTokenizer, AutoModelForTokenClassification | |
from transformers import pipeline | |
from models.fastapi_globals import g ,GlobalsMiddleware | |
# @asynccontextmanager | |
# async def lifespan(app: FastAPI): | |
# # initialize_nlp() | |
# print("Initializing NER model and tokenizer") | |
# logging.info("Initializing NER model and tokenizer") | |
# app.tokenizer = AutoTokenizer.from_pretrained("ml6team/bert-base-uncased-city-country-ner") | |
# app.model = AutoModelForTokenClassification.from_pretrained("ml6team/bert-base-uncased-city-country-ner") | |
# app.nlp = pipeline('ner', model=app.model, tokenizer=app.tokenizer, aggregation_strategy="simple") | |
# g.set_default("ner_model", ner_model) | |
# yield | |
# del sentiment_model | |
# g.cleanup() | |
app = FastAPI() | |
app.include_router(location.router, prefix="/location/api/v1") | |