Oliver Li commited on
Commit
6e993f1
·
1 Parent(s): c483e0d

add initial table data and changed column format

Browse files
Files changed (1) hide show
  1. app.py +58 -3
app.py CHANGED
@@ -48,6 +48,59 @@ selected_model = st.selectbox("Choose a fine-tuned model:", model_options)
48
  st.write("### Model Information")
49
  st.write(f"**Description:** {model_options[selected_model]['description']}")
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  # Load the model and perform toxicity analysis
52
  if st.button("Analyze"):
53
  if not text:
@@ -65,10 +118,12 @@ if st.button("Analyze"):
65
  # Create a table with the input text (or a portion of it), the highest toxicity class, and its probability
66
  table_data = {
67
  "Text (portion)": [text[:50]],
68
- f"{results[0][0]}": results[0][1],
69
- f"{results[1][0]}": results[1][1]
 
 
70
  }
71
- table_df = pd.DataFrame(table_data)
72
  st.table(table_df)
73
  else:
74
  sentiment_pipeline = load_model(selected_model)
 
48
  st.write("### Model Information")
49
  st.write(f"**Description:** {model_options[selected_model]['description']}")
50
 
51
+ table_df = pd.DataFrame(columns=["Text (portion)", "Toxicity class 1", "Class 1 probability", "Toxicity class 2", "Class 2 probability"])
52
+ initial_table_data = [{'Text (portion)': ["who's speaking? \n you goddamn cocksucker you know "],
53
+ 'Toxicity class 1': ['obscene'],
54
+ 'Class 1 probability': 0.7282997369766235,
55
+ 'Toxicity class 2': ['toxic'],
56
+ 'Class 2 probability': 0.2139672487974167},
57
+ {'Text (portion)': ['::Here is another source: Melissa Sue Halverson (2'],
58
+ 'Toxicity class 1': ['toxic'],
59
+ 'Class 1 probability': 0.24484945833683014,
60
+ 'Toxicity class 2': ['obscene'],
61
+ 'Class 2 probability': 0.1627064049243927},
62
+ {'Text (portion)': [', 8 November 2007 (UTC) \n\n All I can say is, havin'],
63
+ 'Toxicity class 1': ['toxic'],
64
+ 'Class 1 probability': 0.7277262806892395,
65
+ 'Toxicity class 2': ['obscene'],
66
+ 'Class 2 probability': 0.2502792477607727},
67
+ {'Text (portion)': ['::::I only see that at birth two persons are given'],
68
+ 'Toxicity class 1': ['toxic'],
69
+ 'Class 1 probability': 0.2711867094039917,
70
+ 'Toxicity class 2': ['insult'],
71
+ 'Class 2 probability': 0.15477754175662994},
72
+ {'Text (portion)': ["* There you have it: one man's Barnstar is another"],
73
+ 'Toxicity class 1': ['toxic'],
74
+ 'Class 1 probability': 0.5408656001091003,
75
+ 'Toxicity class 2': ['insult'],
76
+ 'Class 2 probability': 0.12563346326351166},
77
+ {'Text (portion)': ['" \n\n == Fact == \n\n Could just be abit of trivial f'],
78
+ 'Toxicity class 1': ['toxic'],
79
+ 'Class 1 probability': 0.35239243507385254,
80
+ 'Toxicity class 2': ['obscene'],
81
+ 'Class 2 probability': 0.1686778962612152},
82
+ {'Text (portion)': ['HE IS A GHAY ASS FUCKER@@!!'],
83
+ 'Toxicity class 1': ['obscene'],
84
+ 'Class 1 probability': 0.7819343209266663,
85
+ 'Toxicity class 2': ['toxic'],
86
+ 'Class 2 probability': 0.16951803863048553},
87
+ {'Text (portion)': ["I'VE SEEN YOUR CRIMES AGAINST CHILDREN AND I'M ASH"],
88
+ 'Toxicity class 1': ['toxic'],
89
+ 'Class 1 probability': 0.8491994738578796,
90
+ 'Toxicity class 2': ['threat'],
91
+ 'Class 2 probability': 0.04749392718076706},
92
+ {'Text (portion)': [':While with a lot of that essay says, general time'],
93
+ 'Toxicity class 1': ['toxic'],
94
+ 'Class 1 probability': 0.282654732465744,
95
+ 'Toxicity class 2': ['obscene'],
96
+ 'Class 2 probability': 0.15901680290699005},
97
+ {'Text (portion)': ['== Help == \n\n Please members of wiki, help me. My '],
98
+ 'Toxicity class 1': ['toxic'],
99
+ 'Class 1 probability': 0.3118911385536194,
100
+ 'Toxicity class 2': ['obscene'],
101
+ 'Class 2 probability': 0.16506287455558777}]
102
+ for d in initial_table_data:
103
+ pd.concat([table_df, pd.DataFrame(d)], ignore_index=True)
104
  # Load the model and perform toxicity analysis
105
  if st.button("Analyze"):
106
  if not text:
 
118
  # Create a table with the input text (or a portion of it), the highest toxicity class, and its probability
119
  table_data = {
120
  "Text (portion)": [text[:50]],
121
+ "Toxicity class 1": [results[0][0]],
122
+ f"Class 1 probability": results[0][1],
123
+ "Toxicity class 2": [results[1][0]],
124
+ f"Class 2 probability": results[1][1]
125
  }
126
+ table_df = pd.concat([table_df, pd.DataFrame(table_data)], ignore_index=True)
127
  st.table(table_df)
128
  else:
129
  sentiment_pipeline = load_model(selected_model)