File size: 567 Bytes
66bea31
 
 
92af710
66bea31
d0872dd
66bea31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from transformers import pipeline
import gradio as gr
import time
import torch

p = pipeline("automatic-speech-recognition", model="ibm-granite/granite-speech-3.2-8b", torch_dtype=torch.bfloat16, trust_remote_code=True)

def transcribe(audio, state=""):
    time.sleep(3)
    text = p(audio)["text"]
    state += text + " "
    return state, state
    
gr.Interface(
    fn=transcribe, 
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath"),
        'state'
    ],
    outputs=[
        "textbox",
        "state"
    ],
    live=True).launch()