Merge train.py with generate.py
Browse files
app.py
CHANGED
@@ -8,8 +8,75 @@ import numpy as np
|
|
8 |
import os
|
9 |
import time
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Initialize the BERT tokenizer
|
15 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
8 |
import os
|
9 |
import time
|
10 |
|
11 |
+
LATENT_DIM = 128
|
12 |
+
HIDDEN_DIM = 256
|
13 |
+
|
14 |
+
|
15 |
+
# Text encoder
|
16 |
+
class TextEncoder(nn.Module):
|
17 |
+
def __init__(self, hidden_size, output_size):
|
18 |
+
super(TextEncoder, self).__init__()
|
19 |
+
self.bert = BertModel.from_pretrained('bert-base-uncased')
|
20 |
+
self.fc = nn.Linear(self.bert.config.hidden_size, output_size)
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask):
|
23 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
24 |
+
return self.fc(outputs.last_hidden_state[:, 0, :])
|
25 |
+
|
26 |
+
# CVAE model
|
27 |
+
class CVAE(nn.Module):
|
28 |
+
def __init__(self, text_encoder):
|
29 |
+
super(CVAE, self).__init__()
|
30 |
+
self.text_encoder = text_encoder
|
31 |
+
|
32 |
+
# Encoder
|
33 |
+
self.encoder = nn.Sequential(
|
34 |
+
nn.Conv2d(4, 32, 3, stride=1, padding=1),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Conv2d(32, 64, 3, stride=2, padding=1),
|
37 |
+
nn.ReLU(),
|
38 |
+
nn.Conv2d(64, 128, 3, stride=2, padding=1),
|
39 |
+
nn.ReLU(),
|
40 |
+
nn.Flatten(),
|
41 |
+
nn.Linear(128 * 4 * 4, HIDDEN_DIM)
|
42 |
+
)
|
43 |
+
|
44 |
+
self.fc_mu = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)
|
45 |
+
self.fc_logvar = nn.Linear(HIDDEN_DIM + HIDDEN_DIM, LATENT_DIM)
|
46 |
+
|
47 |
+
# Decoder
|
48 |
+
self.decoder_input = nn.Linear(LATENT_DIM + HIDDEN_DIM, 128 * 4 * 4)
|
49 |
+
self.decoder = nn.Sequential(
|
50 |
+
nn.ConvTranspose2d(128, 64, 3, stride=2, padding=1, output_padding=1),
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.ConvTranspose2d(64, 32, 3, stride=2, padding=1, output_padding=1),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.Conv2d(32, 4, 3, stride=1, padding=1),
|
55 |
+
nn.Tanh()
|
56 |
+
)
|
57 |
+
|
58 |
+
def encode(self, x, c):
|
59 |
+
x = self.encoder(x)
|
60 |
+
x = torch.cat([x, c], dim=1)
|
61 |
+
mu = self.fc_mu(x)
|
62 |
+
logvar = self.fc_logvar(x)
|
63 |
+
return mu, logvar
|
64 |
+
|
65 |
+
def decode(self, z, c):
|
66 |
+
z = torch.cat([z, c], dim=1)
|
67 |
+
x = self.decoder_input(z)
|
68 |
+
x = x.view(-1, 128, 4, 4)
|
69 |
+
return self.decoder(x)
|
70 |
+
|
71 |
+
def reparameterize(self, mu, logvar):
|
72 |
+
std = torch.exp(0.5 * logvar)
|
73 |
+
eps = torch.randn_like(std)
|
74 |
+
return mu + eps * std
|
75 |
+
|
76 |
+
def forward(self, x, c):
|
77 |
+
mu, logvar = self.encode(x, c)
|
78 |
+
z = self.reparameterize(mu, logvar)
|
79 |
+
return self.decode(z, c), mu, logvar
|
80 |
|
81 |
# Initialize the BERT tokenizer
|
82 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|