File size: 4,741 Bytes
457ce4f
 
 
 
 
 
 
 
7887362
 
457ce4f
7887362
457ce4f
7887362
 
b25f434
457ce4f
 
 
 
f8d575d
7887362
 
 
f8d575d
457ce4f
 
 
7887362
457ce4f
 
 
 
 
 
 
 
 
 
f8d575d
7887362
457ce4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee1d89
 
7887362
 
 
 
457ce4f
 
 
 
f7adb40
457ce4f
 
 
 
 
 
 
3814575
457ce4f
 
 
 
 
 
 
 
 
 
3814575
457ce4f
 
 
 
 
 
 
3814575
457ce4f
 
 
 
 
 
 
 
3814575
457ce4f
 
 
 
 
 
 
3814575
457ce4f
 
 
e390658
 
 
 
b25f434
e390658
 
457ce4f
 
 
 
7887362
457ce4f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

device = "cuda" if torch.cuda.is_available() else "cpu"

available_models = [
    "stabilityai/sdxl-turbo",
    "stabilityai/sd-turbo"]

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


def init_model(model_repo_id):
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    return pipe

# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model_repo_id, 
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    pipe = loaded_models[model_repo_id].to(device)
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            model_repo_id = gr.Dropdown(available_models,
                                        value=available_models[0],
                                        multiselect=False,
                                        label="Model",
                                        info="Choose models for generation")
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=256,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=256,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])

        
    loaded_models = {}

    for model in available_models:
        loaded_models[model] = init_model(model)
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_repo_id,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()