File size: 4,775 Bytes
bd0305e
 
 
 
 
 
f541eb3
d9b7ce5
f541eb3
 
 
 
 
 
 
bd0305e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f541eb3
 
 
 
 
 
bd0305e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f541eb3
bd0305e
 
 
 
 
f541eb3
bd0305e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList
import time
import numpy as np
from torch.nn import functional as F
import os
token_key = True#os.environ.get("HUGGING_FACE_HUB_TOKEN")

if torch.cuda.is_available():
    m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16).cuda()
    tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
else:
    m = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key, torch_dtype=torch.float16)
    tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b",use_auth_token=token_key)
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)


start_message = """<|SYSTEM|># StableAssistant
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
- StableAssistant will refuse to participate in anything that could harm a human."""


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [50278, 50279, 50277, 1, 0]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


def contrastive_generate(text, bad_text):
    with torch.no_grad():
        if torch.cuda_is_available():
            tokens = tok(text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
            bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'].cuda()[:,:4096-1024]
        else:
            tokens = tok(text, return_tensors="pt")['input_ids'][:,:4096-1024]
            bad_tokens = tok(bad_text, return_tensors="pt")['input_ids'][:,:4096-1024]
        history = None
        bad_history = None
        curr_output = list()
        for i in range(1024):
            out = m(tokens, past_key_values=history, use_cache=True)
            logits = out.logits
            history = out.past_key_values
            bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True)
            bad_logits = bad_out.logits
            bad_history = bad_out.past_key_values
            probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
            bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
            logits = torch.log(probs)
            bad_logits = torch.log(bad_probs)
            logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
            probs = F.softmax(logits)
            out = int(torch.multinomial(probs, 1))
            if out in [50278, 50279, 50277, 1, 0]:
                break
            else:
                curr_output.append(out)
            out = np.array([out])
            tokens = torch.from_numpy(np.array([out])).to(
                tokens.device)
            bad_tokens = torch.from_numpy(np.array([out])).to(
                tokens.device)
        return tok.decode(curr_output)

def generate(text, bad_text=None):
    stop = StopOnTokens()
    result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
    return result[0]["generated_text"].replace(text, "")


def user(user_message, history):
    return "", history + [[user_message, ""]]


def bot(history, curr_system_message):
    messages = curr_system_message + "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history])
    output = generate(messages)
    history[-1][1] = output
    time.sleep(1)
    return history


def system_update(msg):
    global curr_system_message
    curr_system_message = msg


with gr.Blocks() as demo:
    gr.Markdown("###StableLM-tuned-Alpha-7B Chat")
    with gr.Row():
        with gr.Column():
            chatbot = gr.Chatbot([])
            clear = gr.Button("Clear")
        with gr.Column():
            system_msg = start_message#gr.Textbox(start_message, label="System Message", interactive=True)
            msg = gr.Textbox(label="Chat Message")

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, [chatbot, system_msg], chatbot
    )
    system_msg.change(system_update, system_msg, None, queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(share=True)