Spaces:
Running
Running
File size: 37,722 Bytes
0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 0550b50 fe806b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
import numpy
numpy.set_printoptions(suppress=True)
def open_audio(filename=None, lib='auto'):
if filename is None:
from tkinter.filedialog import askopenfilename
filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
filename=filename.replace('\\', '/')
if lib=='pedalboard.io':
from pedalboard.io import AudioFile
with AudioFile(filename) as f:
audio = f.read(f.frames)
samplerate = f.samplerate
elif lib=='librosa':
import librosa
audio, samplerate = librosa.load(filename, sr=None, mono=False)
elif lib=='soundfile':
import soundfile
audio, samplerate = soundfile.read(filename)
audio=audio.T
elif lib=='madmom':
import madmom
audio, samplerate = madmom.io.audio.load_audio_file(filename, dtype=float)
audio=audio.T
# elif lib=='pydub':
# from pydub import AudioSegment
# song=AudioSegment.from_file(filename)
# audio = song.get_array_of_samples()
# samplerate=song.frame_rate
# print(audio)
# print(filename)
elif lib=='auto':
for i in ('madmom', 'soundfile', 'librosa', 'pedalboard.io'):
try:
audio,samplerate=open_audio(filename, i)
break
except Exception as e:
print(e)
if len(audio)<2: audio=[audio,audio]
return audio,samplerate
def generate_sidechain(samplerate=44100, length=0.5, curve=2, vol0=0, vol1=1, smoothing=40) ->numpy.array:
x=numpy.concatenate((numpy.linspace(1,0,smoothing),numpy.linspace(vol0,vol1,int(length*samplerate))**curve))
return(x,x)
def outputfilename(output, filename, suffix='_beatswap'):
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
return output+''.join(''.join(filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
def generate_sine(len, freq, samplerate, volume=1):
return numpy.sin(numpy.linspace(0, freq*3.1415926*2*len, int(len*samplerate)))*volume
def generate_saw(len, freq, samplerate, volume=1):
return (numpy.linspace(0, freq*2*len, int(len*samplerate))%2 - 1)*volume
def generate_square(len, freq, samplerate, volume=1):
return ((numpy.linspace(0, freq*2*len, int(len*samplerate)))//1%2 * 2 - 1)*volume
class song:
def __init__(self, filename:str=None, audio:numpy.array=None, samplerate:int=None, beatmap:list=None):
"""song can be loaded from path to an audio file, or from a list/numpy array and samplerate. Audio array should have values from -1 to 1, multiple channels should be stacked vertically. Optionally you can provide your own beat map."""
if filename is None:
from tkinter.filedialog import askopenfilename
self.filename = askopenfilename(title='select song', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
self.audio, self.samplerate=open_audio(self.filename)
else:
self.filename=filename
if audio is None or samplerate is None:
self.audio, self.samplerate=open_audio(self.filename)
else: self.audio, self.samplerate = audio, samplerate
self.beatmap=beatmap
self.filename=self.filename.replace('\\', '/')
self.samplerate=int(self.samplerate)
def write_audio(self, output:str, lib:str='auto'):
""""writes audio"""
if lib=='pedalboard.io':
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio)
#print(audio)
from pedalboard.io import AudioFile
with AudioFile(output, 'w', self.samplerate, self.audio.shape[0]) as f:
f.write(self.audio)
elif lib=='soundfile':
if not isinstance(self.audio,numpy.ndarray): self.audio=numpy.asarray(self.audio)
audio=self.audio.T
import soundfile
soundfile.write(output, audio, self.samplerate)
del audio
elif lib=='auto':
for i in ('pedalboard.io', 'soundfile'):
try:
song.write_audio(self, output, i)
break
except Exception as e:
print(e)
# elif lib=='pydub':
# from pydub import AudioSegment
# song = AudioSegment(self.audio.tobytes(), frame_rate=self.samplerate, sample_width=2, channels=2)
# format = output.split('.')[-1]
# if len(format) > 4:
# format='mp3'
# output = output + '.' + format
# song.export(output, format=format)
def beatmap_scale(self, scale:float):
import math
if scale!=1:
a=0
b=numpy.array([])
while a <len( self.beatmap[:-math.ceil(scale)]):
b=numpy.append(b, (1-(a%1))*self.beatmap[math.floor(a)]+(a%1)*self.beatmap[math.ceil(a)])
a+=scale
self.beatmap=b
def analyze_beats(self, lib='madmom.BeatDetectionProcessor', caching=True, split=None):
#if audio is None and filename is None: (audio, samplerate) = open_audio()
if caching is True:
id=hex(len(self.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(self.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
try:
self.beatmap=numpy.loadtxt(cacheDir, dtype=int)
self.bpm=numpy.average(self.beatmap)/self.samplerate
return
except OSError: pass
if lib.split('.')[0]=='madmom':
from collections.abc import MutableMapping, MutableSequence
import madmom
if lib=='madmom.BeatTrackingProcessor':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
if lib=='madmom.BeatTrackingProcessor.constant':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
if lib=='madmom.BeatTrackingProcessor.consistent':
proc = madmom.features.beats.BeatTrackingProcessor(fps=100, look_ahead=None, look_aside=0)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.BeatDetectionProcessor':
proc = madmom.features.beats.BeatDetectionProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.BeatDetectionProcessor.consistent':
proc = madmom.features.beats.BeatDetectionProcessor(fps=100, look_aside=0)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.CRFBeatDetectionProcessor':
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.CRFBeatDetectionProcessor.constant':
proc = madmom.features.beats.CRFBeatDetectionProcessor(fps=100, use_factors=True, factors=[0.5, 1, 2])
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.DBNBeatTrackingProcessor':
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.DBNBeatTrackingProcessor.1000':
proc = madmom.features.beats.DBNBeatTrackingProcessor(fps=100, transition_lambda=1000)
act = madmom.features.beats.RNNBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
elif lib=='madmom.MultiModelSelectionProcessor': #broken
proc = madmom.features.beats.RNNBeatProcessor(post_processor=None)
predictions = proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
mm_proc = madmom.features.beats.MultiModelSelectionProcessor(num_ref_predictions=None)
self.beatmap= numpy.sort(mm_proc(predictions)*self.samplerate)
elif lib=='madmom.DBNDownBeatTrackingProcessor':
proc = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[4], fps=100)
act = madmom.features.downbeats.RNNDownBeatProcessor()(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
self.beatmap=self.beatmap[:,0]
elif lib=='madmom.PatternTrackingProcessor': #broken
from madmom.models import PATTERNS_BALLROOM
proc = madmom.features.downbeats.PatternTrackingProcessor(PATTERNS_BALLROOM, fps=50)
from madmom.audio.spectrogram import LogarithmicSpectrogramProcessor, SpectrogramDifferenceProcessor, MultiBandSpectrogramProcessor
from madmom.processors import SequentialProcessor
log = LogarithmicSpectrogramProcessor()
diff = SpectrogramDifferenceProcessor(positive_diffs=True)
mb = MultiBandSpectrogramProcessor(crossover_frequencies=[270])
pre_proc = SequentialProcessor([log, diff, mb])
act = pre_proc(madmom.audio.signal.Signal(self.audio.T, self.samplerate))
self.beatmap= proc(act)*self.samplerate
self.beatmap=self.beatmap[:,0]
elif lib=='madmom.DBNBarTrackingProcessor': #broken
beats = song.analyze_beats(self,lib='madmom.DBNBeatTrackingProcessor', caching = caching)
proc = madmom.features.downbeats.DBNBarTrackingProcessor(beats_per_bar=[4], fps=100)
act = madmom.features.downbeats.RNNBarProcessor()(((madmom.audio.signal.Signal(self.audio.T, self.samplerate)), beats))
self.beatmap= proc(act)*self.samplerate
elif lib=='librosa': #broken in 3.9, works in 3.8
import librosa
beat_frames = librosa.beat.beat_track(y=self.audio[0], sr=self.samplerate,hop_length=512)
self.beatmap = librosa.frames_to_samples(beat_frames[1])
# elif lib=='BeatNet':
# from BeatNet.BeatNet import BeatNet # doesn't seem to work well for some reason
# estimator = BeatNet(1, mode='offline', inference_model='DBN', plot=[], thread=False)
# beatmap = estimator.process(filename)
# beatmap=beatmap[:,0]*samplerate
# elif lib=='jump-reward-inference': # doesn't seem to work well for some reason
# from jump_reward_inference.joint_tracker import joint_inference
# estimator = joint_inference(1, plot=False)
# beatmap = estimator.process(filename)
# beatmap=beatmap[:,0]*samplerate
elif lib=='split':
self.beatmap= list(range(0, len(self.audio), len(self.audio)//split))
if lib.split('.')[0]=='madmom':
self.beatmap=numpy.absolute(self.beatmap-500)
if caching is True: numpy.savetxt(cacheDir, self.beatmap.astype(int), fmt='%d')
self.bpm=numpy.average(self.beatmap)/self.samplerate
self.beatmap=self.beatmap.astype(int)
def audio_autotrim(self):
n=0
for i in self.audio[0]:
if i>=0.0001:break
n+=1
self.audio = numpy.asarray([self.audio[0,n:], self.audio[1,n:]])
#print(beatmap)
if self.beatmap is not None:
self.beatmap=numpy.absolute(self.beatmap-n)
else:
print('It is recommended to only use autotrim after computing the beatmap')
def beatmap_autoscale(self):
bpm=(self.beatmap[-1]-self.beatmap[0])/(len(self.beatmap)-1)
#print('BPM =', (bpm/samplerate) * 240, bpm)
if bpm>=160000: scale=1/8
elif (bpm)>=80000: scale=1/4
elif (bpm)>=40000: scale=1/2
elif (bpm)<=20000: scale=2
elif (bpm)<=10000: scale=4
elif (bpm)<=5000: scale=8
song.beatmap_scale(self,scale)
def beatmap_autoinsert(self):
diff=(self.beatmap[1]-self.beatmap[0])
a=0
while diff<self.beatmap[0] and a<100:
self.beatmap=numpy.insert(self.beatmap, 0, self.beatmap[0]-diff)
a+=1
def beatmap_shift(self, shift: float):
if shift>0:
for i in range(len(self.beatmap)-1):
self.beatmap[i] = self.beatmap[i] + shift * (self.beatmap[i+1] - self.beatmap[i])
elif shift<0:
for i in reversed(range(len(self.beatmap)-1)):
self.beatmap[i+1] = self.beatmap[i+1] - shift * (self.beatmap[i] - self.beatmap[i+1])
def beatmap_trim(self, start=0, end=None):
start*=self.samplerate
self.beatmap=self.beatmap[self.beatmap>=start].astype(int)
if end is not None: self.beatmap=self.beatmap[self.beatmap<=end].astype(int)
def beatswap(self, pattern: str, sep=',', smoothing=40, smoothing_mode='replace'):
import math, numpy
# get pattern size
size=0
#cut processing??? not worth it, it is really fast anyways
pattern=pattern.replace(' ', '').split(sep)
for j in pattern:
s=''
if '?' not in j:
for i in j:
if i.isdigit() or i=='.' or i=='-' or i=='/' or i=='+' or i=='%': s=str(s)+str(i)
elif i==':':
if s=='': s='0'
#print(s, eval(s))
size=max(math.ceil(float(eval(s))), size)
s=''
elif s!='': break
if s=='': s='0'
if s=='': s='0'
size=max(math.ceil(float(eval(s))), size)
if isinstance(self.audio,numpy.ndarray): self.audio=numpy.ndarray.tolist(self.audio)
if self.beatmap.dtype!='int32': self.beatmap=self.beatmap.astype(int)
#beat=[]
#start=audio[:beatmap[0]]
#end=audio[beatmap[-1]:audio[-1]]
#for i in range(len(beatmap)-1):
# beat[i]=audio[beatmap[i]:beatmap[i+1]]
# audio is a tuple with l and r channels
#print(len(audio))
self.audio=(self.audio[0], self.audio[1])
#print(beatmap[0], audio[0][100])
result=(self.audio[0][:self.beatmap[0]],self.audio[1][:self.beatmap[0]])
beat=numpy.asarray([[],[]])
# size, iterations are integers
size=int(max(size//1, 1))
# add beat to the end
self.beatmap=numpy.unique(numpy.abs(numpy.append(self.beatmap, len(self.audio[0]))))
iterations=int(len(self.beatmap)//size)
if 'random' in pattern[0].lower():
import random
for i in range(len(self.beatmap)):
choice=random.randint(1,len(self.beatmap)-1)
for a in range(len(self.audio)):
beat=self.audio[a][self.beatmap[choice-1]:self.beatmap[choice]-smoothing]
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing))
result[a].extend(beat)
self.audio = result
return
if 'reverse' in pattern[0].lower():
for a in range(len(self.audio)):
for i in list(reversed(range(len(self.beatmap))))[:-1]:
beat=self.audio[a][self.beatmap[i-1]:self.beatmap[i]-smoothing]
#print(self.beatmap[i-1],self.beatmap[i])
#print(result[a][-1], beat[0])
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[0],smoothing))
result[a].extend(beat)
self.audio = result
return
#print(len(result[0]))
def beatswap_getnum(i: str, c: str):
if c in i:
try:
x=i.index(c)+1
z=''
try:
while i[x].isdigit() or i[x]=='.' or i[x]=='-' or i[x]=='/' or i[x]=='+' or i[x]=='%':
z+=i[x]
x+=1
return z
except IndexError:
return z
except ValueError: return None
#print(len(self.beatmap), size, iterations)
# processing
for j in range(iterations+1):
for i in pattern:
if '!' not in i:
n,s,st,reverse,z=0,'',None,False,None
for c in i:
n+=1
#print('c =', s, ', st =', st, ', s =', s, ', n =,',n)
# Get the character
if c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%':
s=str(s)+str(c)
# If character is : - get start
elif s!='' and c==':':
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
try: st=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
except IndexError: break
s=''
# create a beat
if s!='' and (n==len(i) or not(c.isdigit() or c=='.' or c=='-' or c=='/' or c=='+' or c=='%')):
# start already exists
if st is not None:
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
try:
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
#print(s)
except IndexError: break
else:
# start doesn't exist
#print ('Beat start:',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,'- 1 =',int(eval(s)//1)+j*size, ', mod=',eval(s)%1)
#print ('Beat end: ',s,'=', eval(s),'=',int(eval(s)//1), '+',j,'*',size,' =',int(eval(s)//1)+j*size+1, ', mod=',eval(s)%1)
try:
st=self.beatmap[int(eval(s)//1)+j*size-1 ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
s=self.beatmap[int(eval(s)//1)+j*size ] + eval(s)%1* (self.beatmap[int(eval(s)//1)+j*size +1] - self.beatmap[int(eval(s)//1)+j*size])
except IndexError: break
if st>s:
s, st=st, s
reverse=True
# create the beat
if len(self.audio)>1:
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)],self.audio[1][int(st):int(s)]])
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing],self.audio[1][int(st):int(s)-smoothing]])
else:
if smoothing_mode=='add': beat=numpy.asarray([self.audio[0][int(st):int(s)]])
else: beat=numpy.asarray([self.audio[0][int(st):int(s)-smoothing]])
# process the beat
# channels
z=beatswap_getnum(i,'c')
if z is not None:
if z=='': beat[0],beat[1]=beat[1],beat[0]
elif eval(z)==0:beat[0]*=0
else:beat[1]*=0
# volume
z=beatswap_getnum(i,'v')
if z is not None:
if z=='': z='0'
beat*=eval(z)
z=beatswap_getnum(i,'t')
if z is not None:
if z=='': z='2'
beat**=1/eval(z)
# speed
z=beatswap_getnum(i,'s')
if z is not None:
if z=='': z='2'
z=eval(z)
if z<1:
beat=numpy.asarray((numpy.repeat(beat[0],int(1//z)),numpy.repeat(beat[1],int(1//z))))
else:
beat=numpy.asarray((beat[0,::int(z)],beat[1,::int(z)]))
# bitcrush
z=beatswap_getnum(i,'b')
if z is not None:
if z=='': z='3'
z=1/eval(z)
if z<1: beat=beat*z
beat=numpy.around(beat, max(int(z), 1))
if z<1: beat=beat/z
# downsample
z=beatswap_getnum(i,'d')
if z is not None:
if z=='': z='3'
z=int(eval(z))
beat=numpy.asarray((numpy.repeat(beat[0,::z],z),numpy.repeat(beat[1,::z],z)))
# convert to list
beat=beat.tolist()
# effects with list
# reverse
if ('r' in i and reverse is False) or (reverse is True and 'r' not in i):
beat=(beat[0][::-1],beat[1][::-1] )
# add beat to the result
for a in range(len(self.audio)):
#print('Adding beat... a, s, st:', a, s, st, sep=', ')
#print(result[a][-1])
#print(beat[a][0])
if smoothing>0: result[a].extend(numpy.linspace(result[a][-1],beat[a][0],smoothing))
result[a].extend(beat[a])
#print(len(result[0]))
#
break
#print(time.process_time() - benchmark)
self.audio = result
def beatsample(self, audio2, shift=0):
try: l=len(audio2[0])
except (TypeError, IndexError):
l=len(audio2)
audio2=numpy.vstack((audio2,audio2))
for i in range(len(self.beatmap)):
try: self.audio[:,int(self.beatmap[i]) + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]+=audio2
except (IndexError, ValueError): pass
def sidechain(self, audio2, shift=0, smoothing=40):
try: l=len(audio2[0])
except (TypeError, IndexError):
l=len(audio2)
audio2=numpy.vstack((audio2,audio2))
for i in range(len(self.beatmap)):
try: self.audio[:,int(self.beatmap[i])-smoothing + int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i]))) : int(self.beatmap[i])-smoothing+int(float(shift) * (int(self.beatmap[i+1])-int(self.beatmap[i])))+int(l)]*=audio2
except (IndexError, ValueError): break
def quick_beatswap(self, output:str='', pattern:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, suffix:str='_BeatSwap', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, applies beatswapping to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
pattern: the beatswapping pattern.
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=self.beatmap
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.beatswap(self,pattern)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def quick_sidechain(self, output:str='', audio2:numpy.array=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, filename2:str=None, suffix:str='_Sidechain', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, applies fake sidechain on each beat to the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
audio2: sidechain impulse, basically a curve that the volume will be multiplied by. By default one will be generated with generate_sidechain()
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
filename2: loads sidechain impulse from the file if audio2 if not specified
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if filename2 is None and audio2 is None:
audio2=generate_sidechain()
if audio2 is None:
audio2, samplerate2=open_audio(filename2)
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=self.beatmap
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.sidechain(self,audio2)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def quick_beatsample(self, output:str='', filename2:str=None, scale:float=1, shift:float=0, start:float=0, end:float=None, autotrim:bool=True, autoscale:bool=False, autoinsert:bool=False, audio2:numpy.array=None, suffix:str='_BeatSample', lib:str='madmom.BeatDetectionProcessor'):
"""Generates beatmap if it isn't generated, adds chosen sample to each beat of the song and writes the processed song it next to the .py file. If you don't want to write the file, set output=None
output: can be a relative or an absolute path to a folder or to a file. Filename will be created from the original filename + a suffix to avoid overwriting. If path already contains a filename which ends with audio file extension, such as .mp3, that filename will be used.
filename2: path to the sample.
scale: scales the beatmap, for example if generated beatmap is two times faster than the song you can slow it down by putting 0.5.
shift: shifts the beatmap by this amount of unscaled beats
start: position in seconds, beats before the position will not be manipulated
end: position in seconds, same. Set to None by default.
autotrim: trims silence in the beginning for better beat detection, True by default
autoscale: scales beats so that they are between 10000 and 20000 samples long. Useful when you are processing a lot of files with similar BPMs, False by default.
autoinsert: uses distance between beats and inserts beats at the beginning at that distance if possible. Set to False by default, sometimes it can fix shifted beatmaps and sometimes can add unwanted shift.
suffix: suffix that will be appended to the filename
lib: beat detection library"""
if filename2 is None and audio2 is None:
from tkinter.filedialog import askopenfilename
filename2 = askopenfilename(title='select sidechain impulse', filetypes=[("mp3", ".mp3"),("wav", ".wav"),("flac", ".flac"),("ogg", ".ogg"),("wma", ".wma")])
if audio2 is None:
audio2, samplerate2=open_audio(filename2)
if self.beatmap is None: song.analyze_beats(self,lib=lib)
if autotrim is True: song.audio_autotrim(self)
save=numpy.copy(self.beatmap)
if autoscale is True: song.beatmap_autoscale(self)
if shift!=0: song.beatmap_shift(self,shift)
if scale!=1: song.beatmap_scale(self,scale)
if autoinsert is True: song.beatmap_autoinsert(self)
if start!=0 or end is not None: song.beatmap_trim(self,start, end)
song.beatsample(self,audio2)
if output is not None:
if not (output.lower().endswith('.mp3') or output.lower().endswith('.wav') or output.lower().endswith('.flac') or output.lower().endswith('.ogg') or
output.lower().endswith('.aac') or output.lower().endswith('.ac3') or output.lower().endswith('.aiff') or output.lower().endswith('.wma')):
output=output+''.join(''.join(self.filename.split('/')[-1]).split('.')[:-1])+suffix+'.mp3'
song.write_audio(self,output)
self.beatmap=save
def audio_spectogram(self, hop_length:int=512):
self.hop_length=hop_length
import librosa
self.spectogram=librosa.feature.melspectrogram(y=self.audio, sr=self.samplerate, hop_length=hop_length)
def spectogram_audio(self):
import librosa
self.audio=librosa.feature.inverse.mel_to_audio(M=numpy.swapaxes(numpy.swapaxes(numpy.dstack(( self.spectogram[0,:,:], self.spectogram[1,:,:])), 0, 2), 1,2), sr=self.samplerate, hop_length=self.hop_length)
def write_image(self):
"""Turns song into an image based on beat positions. Currently semi-broken"""
import cv2
audio=self.audio[0].tolist()
height=len(audio)/len(self.beatmap)
width=len(self.beatmap)
height*=3
if height>width:
increase_length=int(height/width)
reduce_width=1
else:
reduce_width=int(width/height)
increase_length=1
increase_length/=10
reduce_width*=10
image=[audio[0:self.beatmap[0]]]
maximum=len(image)
for i in range(len(self.beatmap)-1):
image.append(audio[self.beatmap[i]:self.beatmap[i+1]])
maximum=max(maximum,len(image[i]))
for i in range(len(image)):
image[i].extend((maximum-len(image[i]))*[0])
image[i]=image[i][::reduce_width]
audio=self.audio[1].tolist()
image2=[audio[0:self.beatmap[0]]]
for i in range(len(self.beatmap)-1):
image2.append(audio[self.beatmap[i]:self.beatmap[i+1]])
for i in range(len(image2)):
image2[i].extend((maximum-len(image2[i]))*[0])
image2[i]=image2[i][::reduce_width]
print(len(image[i]), len(image2[i]))
image=numpy.asarray(image)*255
image2=numpy.asarray(image2)*255
image3=numpy.add(image, image2)/2
image,image2,image3=numpy.repeat(image,increase_length,axis=0),numpy.repeat(image2,increase_length,axis=0),numpy.repeat(image3,increase_length,axis=0)
image=cv2.merge([image.T,image2.T, image3.T])
#image=image.astype('uint8')
#image=cv2.resize(image, (0,0), fx=len(image))
cv2.imwrite('cv2_output.png', image)
def fix_beatmap(filename, lib='madmom.BeatDetectionProcessor', scale=1, shift=0):
track=song(filename)
track.analyze_beats(lib=lib)
track.beatmap_shift(shift)
track.beatmap_scale(scale)
id=hex(len(track.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
a=input(f'Are you sure you want to overwrite {cacheDir} using scale = {scale}; shift = {shift}? ("n" to cancel): ')
if 'n' in a.lower(): return
else: numpy.savetxt(cacheDir, track.beatmap.astype(int), fmt='%d')
def delete_beatmap(filename, lib='madmom.BeatDetectionProcessor'):
track=open_audio(filename)[0]
id=hex(len(track.audio[0]))
import os
if not os.path.exists('SavedBeatmaps'):
os.mkdir('SavedBeatmaps')
cacheDir="SavedBeatmaps/" + ''.join(track.filename.split('/')[-1]) + "_"+lib+"_"+id+'.txt'
a=input(f'Are you sure you want to delete {cacheDir}? ("n" to cancel): ')
if 'n' in a.lower(): return
else: os.remove(cacheDir)
|