Abhaykoul's picture
Upload 85 files
9e7090f verified
raw
history blame
24.5 kB
import g4f
from webscout.AIutel import Optimizers
from webscout.AIutel import Conversation
from webscout.AIutel import AwesomePrompts
from webscout.AIbase import Provider, AsyncProvider
from webscout.AIutel import available_providers
from typing import Any, AsyncGenerator
g4f.debug.version_check = False
working_providers = available_providers
completion_allowed_models = [
"code-davinci-002",
"text-ada-001",
"text-babbage-001",
"text-curie-001",
"text-davinci-002",
"text-davinci-003",
]
default_models = {
"completion": "text-davinci-003",
"chat_completion": "gpt-3.5-turbo",
}
default_provider = "Koala"
class AsyncGPT4FREE(AsyncProvider):
def __init__(
self,
provider: str = default_provider,
is_conversation: bool = True,
auth: str = None,
max_tokens: int = 600,
model: str = None,
ignore_working: bool = False,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
):
"""Initialies GPT4FREE
Args:
provider (str, optional): gpt4free based provider name. Defaults to Koala.
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
auth (str, optional): Authentication value for the provider incase it needs. Defaults to None.
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
model (str, optional): LLM model name. Defaults to text-davinci-003|gpt-3.5-turbo.
ignore_working (bool, optional): Ignore working status of the provider. Defaults to False.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
"""
assert provider in available_providers, (
f"Provider '{provider}' is not yet supported. "
f"Try others like {', '.join(available_providers)}"
)
if model is None:
model = default_models["chat_completion"]
self.is_conversation = is_conversation
self.max_tokens_to_sample = max_tokens
self.stream_chunk_size = 64
self.timeout = timeout
self.last_response = {}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
is_conversation,
self.max_tokens_to_sample,
filepath,
update_file,
)
self.conversation.history_offset = history_offset
self.model = model
self.provider = provider
self.ignore_working = ignore_working
self.auth = auth
self.proxy = None if not proxies else list(proxies.values())[0]
def __str__(self):
return f"AsyncGPTFREE(provider={self.provider})"
async def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict | AsyncGenerator:
"""Chat with AI asynchronously.
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict|AsyncGenerator : ai content
```json
{
"text" : "How may I help you today?"
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
payload = dict(
model=self.model,
provider=self.provider, # g4f.Provider.Aichat,
messages=[{"role": "user", "content": conversation_prompt}],
stream=True,
ignore_working=self.ignore_working,
auth=self.auth,
proxy=self.proxy,
timeout=self.timeout,
)
async def format_response(response):
return dict(text=response)
async def for_stream():
previous_chunks = ""
response = g4f.ChatCompletion.create_async(**payload)
async for chunk in response:
previous_chunks += chunk
formatted_resp = await format_response(previous_chunks)
self.last_response.update(formatted_resp)
yield previous_chunks if raw else formatted_resp
self.conversation.update_chat_history(
prompt,
previous_chunks,
)
async def for_non_stream():
async for _ in for_stream():
pass
return self.last_response
return for_stream() if stream else await for_non_stream()
async def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict | AsyncGenerator:
"""Generate response `str` asynchronously.
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str|AsyncGenerator: Response generated
"""
async def for_stream():
async_ask = await self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
)
async for response in async_ask:
yield await self.get_message(response)
async def for_non_stream():
return await self.get_message(
await self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else await for_non_stream()
async def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
return response["text"]
class GPT4FREE(Provider):
def __init__(
self,
provider: str = default_provider,
is_conversation: bool = True,
auth: str = None,
max_tokens: int = 600,
model: str = None,
chat_completion: bool = True,
ignore_working: bool = True,
timeout: int = 30,
intro: str = None,
filepath: str = None,
update_file: bool = True,
proxies: dict = {},
history_offset: int = 10250,
act: str = None,
):
"""Initialies GPT4FREE
Args:
provider (str, optional): gpt4free based provider name. Defaults to Koala.
is_conversation (bool, optional): Flag for chatting conversationally. Defaults to True.
auth (str, optional): Authentication value for the provider incase it needs. Defaults to None.
max_tokens (int, optional): Maximum number of tokens to be generated upon completion. Defaults to 600.
model (str, optional): LLM model name. Defaults to text-davinci-003|gpt-3.5-turbo.
chat_completion(bool, optional): Provide native auto-contexting (conversationally). Defaults to False.
ignore_working (bool, optional): Ignore working status of the provider. Defaults to False.
timeout (int, optional): Http request timeout. Defaults to 30.
intro (str, optional): Conversation introductory prompt. Defaults to None.
filepath (str, optional): Path to file containing conversation history. Defaults to None.
update_file (bool, optional): Add new prompts and responses to the file. Defaults to True.
proxies (dict, optional): Http request proxies. Defaults to {}.
history_offset (int, optional): Limit conversation history to this number of last texts. Defaults to 10250.
act (str|int, optional): Awesome prompt key or index. (Used as intro). Defaults to None.
"""
assert provider in available_providers, (
f"Provider '{provider}' is not yet supported. "
f"Try others like {', '.join(available_providers)}"
)
if model is None:
model = (
default_models["chat_completion"]
if chat_completion
else default_models["completion"]
)
elif not chat_completion:
assert model in completion_allowed_models, (
f"Model '{model}' is not yet supported for completion. "
f"Try other models like {', '.join(completion_allowed_models)}"
)
self.is_conversation = is_conversation
self.max_tokens_to_sample = max_tokens
self.stream_chunk_size = 64
self.timeout = timeout
self.last_response = {}
self.__available_optimizers = (
method
for method in dir(Optimizers)
if callable(getattr(Optimizers, method)) and not method.startswith("__")
)
Conversation.intro = (
AwesomePrompts().get_act(
act, raise_not_found=True, default=None, case_insensitive=True
)
if act
else intro or Conversation.intro
)
self.conversation = Conversation(
False if chat_completion else is_conversation,
self.max_tokens_to_sample,
filepath,
update_file,
)
self.conversation.history_offset = history_offset
self.model = model
self.provider = provider
self.chat_completion = chat_completion
self.ignore_working = ignore_working
self.auth = auth
self.proxy = None if not proxies else list(proxies.values())[0]
self.__chat_class = g4f.ChatCompletion if chat_completion else g4f.Completion
def ask(
self,
prompt: str,
stream: bool = False,
raw: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> dict:
"""Chat with AI
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
raw (bool, optional): Stream back raw response as received. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
dict : {}
```json
{
"text" : "How may I help you today?"
}
```
"""
conversation_prompt = self.conversation.gen_complete_prompt(prompt)
if optimizer:
if optimizer in self.__available_optimizers:
conversation_prompt = getattr(Optimizers, optimizer)(
conversation_prompt if conversationally else prompt
)
else:
raise Exception(
f"Optimizer is not one of {self.__available_optimizers}"
)
def payload():
if self.chat_completion:
return dict(
model=self.model,
provider=self.provider, # g4f.Provider.Aichat,
messages=[{"role": "user", "content": conversation_prompt}],
stream=stream,
ignore_working=self.ignore_working,
auth=self.auth,
proxy=self.proxy,
timeout=self.timeout,
)
else:
return dict(
model=self.model,
prompt=conversation_prompt,
provider=self.provider,
stream=stream,
ignore_working=self.ignore_working,
auth=self.auth,
proxy=self.proxy,
timeout=self.timeout,
)
def format_response(response):
return dict(text=response)
def for_stream():
previous_chunks = ""
response = self.__chat_class.create(**payload())
for chunk in response:
previous_chunks += chunk
formatted_resp = format_response(previous_chunks)
self.last_response.update(formatted_resp)
yield previous_chunks if raw else formatted_resp
self.conversation.update_chat_history(
prompt,
previous_chunks,
)
def for_non_stream():
response = self.__chat_class.create(**payload())
formatted_resp = format_response(response)
self.last_response.update(formatted_resp)
self.conversation.update_chat_history(prompt, response)
return response if raw else formatted_resp
return for_stream() if stream else for_non_stream()
def chat(
self,
prompt: str,
stream: bool = False,
optimizer: str = None,
conversationally: bool = False,
) -> str:
"""Generate response `str`
Args:
prompt (str): Prompt to be send.
stream (bool, optional): Flag for streaming response. Defaults to False.
optimizer (str, optional): Prompt optimizer name - `[code, shell_command]`. Defaults to None.
conversationally (bool, optional): Chat conversationally when using optimizer. Defaults to False.
Returns:
str: Response generated
"""
def for_stream():
for response in self.ask(
prompt, True, optimizer=optimizer, conversationally=conversationally
):
yield self.get_message(response)
def for_non_stream():
return self.get_message(
self.ask(
prompt,
False,
optimizer=optimizer,
conversationally=conversationally,
)
)
return for_stream() if stream else for_non_stream()
def get_message(self, response: dict) -> str:
"""Retrieves message only from response
Args:
response (dict): Response generated by `self.ask`
Returns:
str: Message extracted
"""
assert isinstance(response, dict), "Response should be of dict data-type only"
return response["text"]
from pathlib import Path
from webscout.AIutel import default_path
from json import dump, load
from time import time
from threading import Thread as thr
from functools import wraps
from rich.progress import Progress
import logging
results_path = Path(default_path) / "provider_test.json"
def exception_handler(func):
@wraps(func)
def decorator(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
pass
return decorator
@exception_handler
def is_working(provider: str) -> bool:
"""Test working status of a provider
Args:
provider (str): Provider name
Returns:
bool: is_working status
"""
bot = GPT4FREE(provider=provider, is_conversation=False)
text = bot.chat("hello")
assert isinstance(text, str)
assert bool(text.strip())
assert "</" not in text
assert ":" not in text
assert len(text) > 2
return True
class TestProviders:
def __init__(
self,
test_at_once: int = 5,
quiet: bool = False,
timeout: int = 20,
selenium: bool = False,
do_log: bool = True,
):
"""Constructor
Args:
test_at_once (int, optional): Test n providers at once. Defaults to 5.
quiet (bool, optinal): Disable stdout. Defaults to False.
timout (int, optional): Thread timeout for each provider. Defaults to 20.
selenium (bool, optional): Test even selenium dependent providers. Defaults to False.
do_log (bool, optional): Flag to control logging. Defaults to True.
"""
self.test_at_once: int = test_at_once
self.quiet = quiet
self.timeout = timeout
self.do_log = do_log
self.__logger = logging.getLogger(__name__)
self.working_providers: list = [
provider.__name__
for provider in g4f.Provider.__providers__
if provider.working
]
if not selenium:
import g4f.Provider.selenium as selenium_based
from g4f import webdriver
webdriver.has_requirements = False
selenium_based_providers: list = dir(selenium_based)
for provider in self.working_providers:
try:
selenium_based_providers.index(provider)
except ValueError:
pass
else:
self.__log(
10, f"Dropping provider - {provider} - [Selenium dependent]"
)
self.working_providers.remove(provider)
self.results_path: Path = results_path
self.__create_empty_file(ignore_if_found=True)
self.results_file_is_empty: bool = False
def __log(
self,
level: int,
message: str,
):
"""class logger"""
if self.do_log:
self.__logger.log(level, message)
else:
pass
def __create_empty_file(self, ignore_if_found: bool = False):
if ignore_if_found and self.results_path.is_file():
return
with self.results_path.open("w") as fh:
dump({"results": []}, fh)
self.results_file_is_empty = True
def test_provider(self, name: str):
"""Test each provider and save successful ones
Args:
name (str): Provider name
"""
try:
bot = GPT4FREE(provider=name, is_conversation=False)
start_time = time()
text = bot.chat("hello there")
assert isinstance(text, str), "Non-string response returned"
assert bool(text.strip()), "Empty string"
assert "</" not in text, "Html code returned."
assert ":" not in text, "Json formatted response returned"
assert len(text) > 2
except Exception as e:
pass
else:
self.results_file_is_empty = False
with self.results_path.open() as fh:
current_results = load(fh)
new_result = dict(time=time() - start_time, name=name)
current_results["results"].append(new_result)
self.__log(20, f"Test result - {new_result['name']} - {new_result['time']}")
with self.results_path.open("w") as fh:
dump(current_results, fh)
@exception_handler
def main(
self,
):
self.__create_empty_file()
threads = []
# Create a progress bar
total = len(self.working_providers)
with Progress() as progress:
self.__log(20, f"Testing {total} providers : {self.working_providers}")
task = progress.add_task(
f"[cyan]Testing...[{self.test_at_once}]",
total=total,
visible=self.quiet == False,
)
while not progress.finished:
for count, provider in enumerate(self.working_providers, start=1):
t1 = thr(
target=self.test_provider,
args=(provider,),
)
t1.start()
if count % self.test_at_once == 0 or count == len(provider):
for t in threads:
try:
t.join(self.timeout)
except Exception as e:
pass
threads.clear()
else:
threads.append(t1)
progress.update(task, advance=1)
def get_results(self, run: bool = False, best: bool = False) -> list[dict]:
"""Get test results
Args:
run (bool, optional): Run the test first. Defaults to False.
best (bool, optional): Return name of the best provider. Defaults to False.
Returns:
list[dict]|str: Test results.
"""
if run or self.results_file_is_empty:
self.main()
with self.results_path.open() as fh:
results: dict = load(fh)
results = results["results"]
if not results:
if run:
raise Exception("Unable to find working g4f provider")
else:
self.__log(30, "Hunting down working g4f providers.")
return self.get_results(run=True, best=best)
time_list = []
sorted_list = []
for entry in results:
time_list.append(entry["time"])
time_list.sort()
for time_value in time_list:
for entry in results:
if entry["time"] == time_value:
sorted_list.append(entry)
return sorted_list[0]["name"] if best else sorted_list
@property
def best(self):
"""Fastest provider overally"""
return self.get_results(run=False, best=True)
@property
def auto(self):
"""Best working provider"""
for result in self.get_results(run=False, best=False):
self.__log(20, "Confirming working status of provider : " + result["name"])
if is_working(result["name"]):
return result["name"]