File size: 30,812 Bytes
1034391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
from typing import Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import RMSNorm
from .config import DiaConfig
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
def _str_to_dtype(dtype_str: str) -> torch.dtype | None:
# Allow None for default behavior
if dtype_str is None or dtype_str.lower() == "none":
return None
if dtype_str == "float32":
return torch.float32
elif dtype_str == "float16":
return torch.float16
elif dtype_str == "bfloat16":
return torch.bfloat16
else:
raise ValueError(f"Unsupported dtype string: {dtype_str}")
class DenseGeneral(nn.Module):
"""
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
for the generalized matrix multiplication. Weight/bias shapes are calculated
and parameters created during initialization based on config.
`load_weights` validates shapes and copies data.
Attributes:
axis (Tuple[int, ...]): Input axis or axes to contract.
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
use_bias (bool): Whether to add a bias term.
weight (nn.Parameter): The kernel parameter.
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
"""
def __init__(
self,
in_shapes: tuple[int, ...],
out_features: tuple[int, ...],
axis: tuple[int, ...] = (-1,),
dtype: torch.dtype | None = None,
weight_dtype: torch.dtype | None = None,
device: torch.device | None = None,
):
super().__init__()
self.in_shapes = in_shapes
self.out_features = out_features
self.axis = axis
self.dtype = dtype
self.kernel_shape = self.in_shapes + self.out_features
factory_kwargs = {"device": device, "dtype": weight_dtype}
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
self.register_parameter("bias", None)
def forward(self, inputs: Tensor) -> Tensor:
norm_axis = _normalize_axes(self.axis, inputs.ndim)
kernel_contract_axes = tuple(range(len(norm_axis)))
output = torch.tensordot(
inputs.float(),
self.weight.float(),
dims=(norm_axis, kernel_contract_axes),
).to(inputs.dtype)
return output
def get_activation_fn(activation_string: str) -> nn.Module: # Return Module instance
"""Maps activation string to PyTorch activation function module."""
if activation_string == "gelu":
return nn.GELU()
elif activation_string == "relu":
return nn.ReLU()
elif activation_string == "silu" or activation_string == "swish":
return nn.SiLU()
elif activation_string == "linear":
return nn.Identity()
else:
raise ValueError(f"Unsupported activation function: {activation_string}")
class MlpBlock(nn.Module):
"""MLP block using DenseGeneral."""
def __init__(
self,
config: DiaConfig,
embed_dim: int,
intermediate_dim: int,
dropout_rate: float,
activations: list[str] = ["silu", "linear"],
use_pre_norm: bool = False,
):
super().__init__()
self.use_pre_norm = use_pre_norm
num_activations = len(activations)
compute_dtype = _str_to_dtype(config.training.dtype)
weight_dtype = _str_to_dtype(config.model.weight_dtype)
self.dtype = compute_dtype
# Assume default device for now, could be passed in config
if use_pre_norm:
self.pre_norm = RMSNorm(
embed_dim,
eps=config.model.normalization_layer_epsilon,
dtype=torch.float32,
)
self.wi_fused = DenseGeneral(
in_shapes=(embed_dim,),
out_features=(
num_activations,
intermediate_dim,
),
axis=(-1,),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
self.activation_fn_0 = get_activation_fn(activations[0]) # silu
self.activation_fn_1 = get_activation_fn(activations[1]) # linear
self.dropout = nn.Dropout(dropout_rate)
# Output layer using DenseGeneral
self.wo = DenseGeneral(
in_shapes=(intermediate_dim,),
out_features=(embed_dim,),
axis=(-1,),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
def forward(self, x: torch.Tensor, deterministic: bool) -> torch.Tensor:
"""Forward pass."""
if self.use_pre_norm and hasattr(self, "pre_norm"):
x = self.pre_norm(x)
fused_x = self.wi_fused(x)
gate_input = fused_x[..., 0, :]
up_input = fused_x[..., 1, :]
gate = self.activation_fn_0(gate_input)
up = self.activation_fn_1(up_input)
hidden = torch.mul(gate, up).to(self.dtype)
if not deterministic:
hidden = self.dropout(hidden)
output = self.wo(hidden)
return output
class RotaryEmbedding(nn.Module):
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
def __init__(
self,
embedding_dims: int,
min_timescale: int = 1,
max_timescale: int = 10000,
dtype: torch.dtype = torch.float32,
):
super().__init__()
if embedding_dims % 2 != 0:
raise ValueError("Embedding dim must be even for RoPE.")
self.embedding_dims = embedding_dims
self.min_timescale = min_timescale
self.max_timescale = max_timescale
self.dtype = dtype
half_embedding_dim = embedding_dims // 2
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
self.register_buffer(
"timescale",
self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction,
persistent=False,
)
def extra_repr(self) -> str:
s = f"{self.timescale.shape}"
return s
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
"""Applies RoPE."""
position = position.unsqueeze(-1).unsqueeze(-1)
timescale = self.timescale.to(inputs.device)
sinusoid_inp = position / timescale
sin = torch.sin(sinusoid_inp).to(inputs.dtype)
cos = torch.cos(sinusoid_inp).to(inputs.dtype)
first_half, second_half = torch.chunk(inputs, 2, dim=-1)
first_part = first_half * cos - second_half * sin
second_part = second_half * cos + first_half * sin
return torch.cat((first_part, second_part), dim=-1)
class KVCache:
def __init__(self, num_heads, max_len, head_dim, device, k=None, v=None):
self.k = torch.zeros((2, num_heads, max_len, head_dim), device=device) if k is None else k
self.v = torch.zeros((2, num_heads, max_len, head_dim), device=device) if v is None else v
self.current_idx = 0
self.max_len = max_len
def get_kv_for_attention(self, current_k, current_v):
if self.current_idx == 0:
return current_k, current_v
else:
past_k = self.k[:, :, : self.current_idx, :]
past_v = self.v[:, :, : self.current_idx, :]
attn_k = torch.cat((past_k, current_k), dim=2)
attn_v = torch.cat((past_v, current_v), dim=2)
return attn_k, attn_v
def update_cache(self, k, v):
assert self.current_idx < self.max_len
self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
self.current_idx += 1
def prefill_kv(self, k, v):
prefill_len = k.shape[2]
assert prefill_len <= self.max_len
self.k[:, :, :prefill_len, :] = k
self.v[:, :, :prefill_len, :] = v
self.current_idx = prefill_len
class Attention(nn.Module):
"""Attention using DenseGeneral."""
def __init__(
self,
config: DiaConfig,
q_embed_dim: int,
kv_embed_dim: int,
num_query_heads: int,
num_kv_heads: int,
head_dim: int,
dropout_rate: float,
is_cross_attn: bool = False,
out_embed_dim: int | None = None,
):
super().__init__()
self.num_query_heads = num_query_heads
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
self.is_cross_attn = is_cross_attn
self.dropout_rate = dropout_rate
compute_dtype = _str_to_dtype(config.training.dtype)
weight_dtype = _str_to_dtype(config.model.weight_dtype)
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
self.projected_query_dim = num_query_heads * head_dim
if num_query_heads % num_kv_heads != 0:
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
self.num_gqa_groups = num_query_heads // num_kv_heads
# --- Projection Layers using DenseGeneral ---
self.q_proj = DenseGeneral(
in_shapes=(q_embed_dim,),
out_features=(num_query_heads, head_dim),
axis=(-1,),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
self.k_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
self.v_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
self.o_proj = DenseGeneral(
in_shapes=(num_query_heads, head_dim),
out_features=(self.output_dim,),
axis=(-2, -1),
dtype=compute_dtype,
weight_dtype=weight_dtype,
)
# --- Rotary Embedding ---
self.rotary_emb = RotaryEmbedding(
embedding_dims=self.head_dim,
min_timescale=config.model.rope_min_timescale,
max_timescale=config.model.rope_max_timescale,
dtype=compute_dtype,
)
def forward(
self,
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
Xkv: torch.Tensor, # (B, S, E) S = 1 in AR generation
q_positions: torch.Tensor, # (B, T)
kv_positions: torch.Tensor | None = None, # (B, S)
deterministic: bool = True,
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
prefill: bool = False, # True only when prefilling KV Cache
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
"""
Performs attention calculation with optional KV caching.
Args:
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
q_positions: Positions for queries (B, T).
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
deterministic: If True, disable dropout.
attn_mask: Attention mask.
cache: KVCache.
prefill: If True, use prefill mode.
Returns:
A tuple containing:
- output: The attention output tensor (B, T, output_dim).
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
"""
if kv_positions is None:
kv_positions = q_positions
original_dtype = Xq.dtype
Xq_BxTxNxH = self.q_proj(Xq)
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
# Input values into attention calculation
attn_k: torch.Tensor | None = None
attn_v: torch.Tensor | None = None
new_kv_cache: tuple[torch.Tensor, torch.Tensor] | None = None
# Decoder Cross Attention
if self.is_cross_attn:
# Directly use cache (no need to check index)
attn_k, attn_v = cache.k, cache.v
if attn_k.shape[1] != self.num_query_heads or attn_v.shape[1] != self.num_query_heads:
raise ValueError(
f"Cross-attention cache head dimension ({attn_k.shape[1]}) "
f"does not match num_query_heads ({self.num_query_heads}). "
"Cache should be pre-repeated for GQA."
)
# Self Attention
else:
Xk_BxSxKxH = self.k_proj(Xkv) # (B, S, K, H)
Xv_BxSxKxH = self.v_proj(Xkv) # (B, S, K, H)
Xk_BxSxKxH = self.rotary_emb(Xk_BxSxKxH, position=kv_positions) # (B, S, K, H)
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
# S=1 for Decode Step
if self.num_gqa_groups > 1:
Xk_BxNxSxH = Xk_BxKxSxH.repeat_interleave(self.num_gqa_groups, dim=1)
Xv_BxNxSxH = Xv_BxKxSxH.repeat_interleave(self.num_gqa_groups, dim=1)
else:
Xk_BxNxSxH = Xk_BxKxSxH
Xv_BxNxSxH = Xv_BxKxSxH
# Encoder Self Attention
if cache is None:
attn_k = Xk_BxNxSxH
attn_v = Xv_BxNxSxH
# Decoder Self Attention
else:
# In prefill mode, we fill in cache until prefill length
if prefill:
attn_k, attn_v = Xk_BxNxSxH, Xv_BxNxSxH
cache.prefill_kv(attn_k, attn_v)
# In decode step, we add current K/V to cache step by step
else:
new_kv_cache = Xk_BxNxSxH, Xv_BxNxSxH
attn_k, attn_v = cache.get_kv_for_attention(Xk_BxNxSxH, Xv_BxNxSxH)
attn_output = F.scaled_dot_product_attention(
Xq_BxNxTxH,
attn_k,
attn_v,
attn_mask=attn_mask,
dropout_p=self.dropout_rate if not deterministic else 0.0,
scale=1.0,
)
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
output = self.o_proj(attn_output)
return output.to(original_dtype), new_kv_cache
class EncoderLayer(nn.Module):
"""Transformer Encoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
embed_dim = enc_config.n_embd
self.pre_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.self_attention = Attention(
config=config,
q_embed_dim=embed_dim,
kv_embed_dim=embed_dim,
num_query_heads=enc_config.n_head,
num_kv_heads=enc_config.n_head,
head_dim=enc_config.head_dim,
dropout_rate=model_config.dropout,
is_cross_attn=False,
out_embed_dim=embed_dim,
)
self.post_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.mlp = MlpBlock(
config=config,
embed_dim=embed_dim,
intermediate_dim=enc_config.n_hidden,
activations=enc_config.mlp_activations,
dropout_rate=model_config.dropout,
use_pre_norm=enc_config.use_pre_norm,
)
self.dropout = nn.Dropout(model_config.dropout)
def forward(
self,
x: torch.Tensor,
src_positions: torch.Tensor | None = None,
deterministic: bool = True,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x)
sa_out, _ = self.self_attention(
Xq=x_norm,
Xkv=x_norm,
q_positions=src_positions,
kv_positions=src_positions,
deterministic=deterministic,
attn_mask=attn_mask,
)
x = residual + sa_out
residual = x
x_norm = self.post_sa_norm(x)
mlp_out = self.mlp(x_norm, deterministic=deterministic)
x = residual + mlp_out
if not deterministic:
x = self.dropout(x)
return x
class Encoder(nn.Module):
"""Transformer Encoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
compute_dtype = _str_to_dtype(config.training.dtype)
self.embedding = nn.Embedding(
model_config.src_vocab_size,
enc_config.n_embd,
dtype=compute_dtype,
)
self.dropout = nn.Dropout(model_config.dropout)
self.layers = nn.ModuleList([EncoderLayer(config=config) for _ in range(enc_config.n_layer)])
self.norm = RMSNorm(
enc_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
def forward(
self,
x_ids: torch.Tensor,
src_positions: torch.Tensor | None = None,
deterministic: bool = True,
attn_mask: torch.Tensor | None = None,
) -> torch.Tensor:
x = self.embedding(x_ids)
if not deterministic:
x = self.dropout(x)
for layer in self.layers:
x = layer(
x,
src_positions=src_positions,
deterministic=deterministic,
attn_mask=attn_mask,
)
x = self.norm(x)
if not deterministic:
x = self.dropout(x)
return x
class DecoderLayer(nn.Module):
"""Transformer Decoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
enc_config = config.model.encoder
dec_embed_dim = dec_config.n_embd
enc_embed_dim = enc_config.n_embd
# Norms
self.pre_sa_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_ca_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_mlp_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
# Self-Attention (GQA) with Causal Masking
self.self_attention = Attention(
config=config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=dec_embed_dim,
num_query_heads=dec_config.gqa_query_heads,
num_kv_heads=dec_config.kv_heads,
head_dim=dec_config.gqa_head_dim,
dropout_rate=model_config.dropout,
is_cross_attn=False,
out_embed_dim=dec_embed_dim,
)
# Cross-Attention (MHA)
self.cross_attention = Attention(
config=config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
num_query_heads=dec_config.cross_query_heads,
num_kv_heads=dec_config.cross_query_heads,
head_dim=dec_config.cross_head_dim,
dropout_rate=model_config.dropout,
is_cross_attn=True,
out_embed_dim=dec_embed_dim,
)
# MLP
self.mlp = MlpBlock(
config=config,
embed_dim=dec_embed_dim,
intermediate_dim=dec_config.n_hidden,
activations=dec_config.mlp_activations,
dropout_rate=model_config.dropout,
use_pre_norm=dec_config.use_pre_norm,
)
def forward(
self,
x: torch.Tensor,
encoder_out: torch.Tensor,
tgt_positions: torch.Tensor,
src_positions: torch.Tensor | None,
deterministic: bool,
self_attn_mask: torch.Tensor,
cross_attn_mask: torch.Tensor,
self_attn_cache: KVCache,
cross_attn_cache: KVCache,
prefill: bool = False,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x)
sa_out, new_kv_cache = self.self_attention(
Xq=x_norm, # (2, 1, D)
Xkv=x_norm, # (2, 1, D)
q_positions=tgt_positions, # (2, 1)
kv_positions=tgt_positions, # (2, 1)
deterministic=deterministic,
attn_mask=self_attn_mask, # (2, 1, 1, S_max)
cache=self_attn_cache,
prefill=prefill,
)
x = residual + sa_out
# 2. Cross-Attention
residual = x
x_norm = self.pre_ca_norm(x)
ca_out, _ = self.cross_attention(
Xq=x_norm,
Xkv=encoder_out,
q_positions=tgt_positions,
kv_positions=src_positions,
deterministic=deterministic,
attn_mask=cross_attn_mask,
cache=cross_attn_cache,
)
x = residual + ca_out
# 3. MLP
residual = x
x_norm = self.pre_mlp_norm(x)
mlp_out = self.mlp(x_norm, deterministic=deterministic)
x = residual + mlp_out
return x, new_kv_cache
class Decoder(nn.Module):
"""Transformer Decoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
train_config = config.training
data_config = config.data
compute_dtype = _str_to_dtype(config.training.dtype)
weight_dtype = _str_to_dtype(config.model.weight_dtype)
self.num_channels = data_config.channels
self.num_layers = dec_config.n_layer
self.embeddings = nn.ModuleList(
[
nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype)
for _ in range(self.num_channels)
]
)
self.dropout = nn.Dropout(model_config.dropout)
self.layers = nn.ModuleList([DecoderLayer(config=config) for _ in range(self.num_layers)])
self.norm = RMSNorm(
dec_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
# Final Logits Projection using DenseGeneral
self.logits_dense = DenseGeneral(
in_shapes=(dec_config.n_embd,),
out_features=(self.num_channels, model_config.tgt_vocab_size),
axis=(-1,),
dtype=(torch.float32 if train_config.logits_dot_in_fp32 else compute_dtype),
weight_dtype=weight_dtype,
)
self.logits_in_fp32 = train_config.logits_dot_in_fp32
def precompute_cross_attention_kv(
self,
max_len: int,
encoder_out: torch.Tensor, # (B, S, E)
src_positions: torch.Tensor | None, # (B, S)
) -> list[KVCache]:
"""
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
"""
per_layer_kv_cache: list[KVCache] = []
for layer in self.layers:
cross_attn_module = layer.cross_attention
k_proj = cross_attn_module.k_proj(encoder_out)
v_proj = cross_attn_module.v_proj(encoder_out)
k_proj = cross_attn_module.rotary_emb(k_proj, position=src_positions)
k = k_proj.transpose(1, 2)
v = v_proj.transpose(1, 2)
per_layer_kv_cache.append(
KVCache(
cross_attn_module.num_kv_heads,
max_len,
cross_attn_module.head_dim,
k.device,
k=k,
v=v,
)
)
return per_layer_kv_cache
def decode_step(
self,
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
tgt_pos_Bx1: torch.Tensor, # [B, 1]
encoder_out: torch.Tensor, # [B, S, E]
self_attn_mask: Any, # None
cross_attn_mask: torch.Tensor, # [B, 1, 1, S]
self_attention_cache: list[KVCache],
cross_attention_cache: list[KVCache],
) -> torch.Tensor:
"""
Performs a single decoding step, managing KV caches layer by layer.
Returns:
A tuple containing:
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
"""
assert self_attn_mask is None, "Self-attention mask should be None, kept for pattern"
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_Bx1xC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
new_cache = []
for i, layer in enumerate(self.layers):
self_cache = self_attention_cache[i]
cross_cache = cross_attention_cache[i]
x, new_kv_cache = layer(
x, # (2, 1, D)
encoder_out, # (2, S, E)
src_positions=None, # CA KV is already computed
tgt_positions=tgt_pos_Bx1, # (2, 1)
deterministic=True,
self_attn_mask=None,
cross_attn_mask=cross_attn_mask,
self_attn_cache=self_cache,
cross_attn_cache=cross_cache,
)
new_cache.append(new_kv_cache)
x = self.norm(x)
logits_Bx1xCxV = self.logits_dense(x)
return logits_Bx1xCxV.to(torch.float32), new_cache
def forward(
self,
tgt_ids_BxTxC: torch.Tensor,
encoder_out: torch.Tensor,
tgt_positions: torch.Tensor,
src_positions: torch.Tensor,
deterministic: bool,
self_attn_mask: torch.Tensor,
cross_attn_mask: torch.Tensor,
self_attention_cache: list[KVCache],
cross_attention_cache: list[KVCache],
) -> torch.Tensor:
"""
Forward pass for the Decoder stack, managing KV caches.
Args:
tgt_ids_BxTxC: Target token IDs (B, T, C).
encoder_out: Output from the encoder (B, S, E).
tgt_positions: Positions for target sequence (B, T).
src_positions: Positions for source sequence (B, S).
deterministic: Disable dropout if True.
self_attn_mask: Mask for self-attention.
cross_attn_mask: Mask for cross-attention.
past_key_values: List containing the self-attention KV cache for each layer
from the previous decoding step. `len(past_key_values)` should
equal `num_layers`.
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
derived from `encoder_out`. This is passed identically
to all layers.
Returns:
A tuple containing:
- logits: The final output logits (B, T, C * V), cast to float32.
- present_key_values: A list containing the updated self-attention KV cache
for each layer for the *current* decoding step.
"""
_, _, num_channels_in = tgt_ids_BxTxC.shape
assert num_channels_in == self.num_channels, "Input channels mismatch"
# Embeddings
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_BxTxC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
if not deterministic:
x = self.dropout(x)
for i, layer in enumerate(self.layers):
x, _ = layer(
x,
encoder_out,
tgt_positions=tgt_positions,
src_positions=src_positions,
deterministic=deterministic,
self_attn_mask=self_attn_mask,
cross_attn_mask=cross_attn_mask,
self_attn_cache=self_attention_cache[i],
cross_attn_cache=cross_attention_cache[i],
prefill=True,
)
# Final Norm
x = self.norm(x)
logits_BxTxCxV = self.logits_dense(x)
return logits_BxTxCxV.to(torch.float32)
class DiaModel(nn.Module):
"""PyTorch Dia Model using DenseGeneral."""
def __init__(self, config: DiaConfig):
super().__init__()
self.config = config
self.encoder = Encoder(config)
self.decoder = Decoder(config)
def forward(
self,
src_BxS: torch.Tensor,
tgt_BxTxC: torch.Tensor,
src_positions: torch.Tensor | None = None,
tgt_positions: torch.Tensor | None = None,
enc_self_attn_mask: torch.Tensor | None = None,
dec_self_attn_mask: torch.Tensor | None = None,
dec_cross_attn_mask: torch.Tensor | None = None,
enable_dropout: bool = True,
):
deterministic = not enable_dropout
# --- Encoder Pass ---
encoder_out = self.encoder(
x_ids=src_BxS,
src_positions=src_positions,
deterministic=deterministic,
attn_mask=enc_self_attn_mask,
)
# --- Decoder Pass ---
logits, _ = self.decoder(
tgt_ids_BxTxC=tgt_BxTxC,
encoder_out=encoder_out,
tgt_positions=tgt_positions,
src_positions=src_positions,
deterministic=deterministic,
self_attn_mask=dec_self_attn_mask,
cross_attn_mask=dec_cross_attn_mask,
precomputed_cross_attn_kv=None,
)
return logits
|