File size: 30,812 Bytes
1034391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
from typing import Any

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import RMSNorm

from .config import DiaConfig


def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
    return tuple(ax if ax >= 0 else ndim + ax for ax in axes)


def _str_to_dtype(dtype_str: str) -> torch.dtype | None:
    # Allow None for default behavior
    if dtype_str is None or dtype_str.lower() == "none":
        return None
    if dtype_str == "float32":
        return torch.float32
    elif dtype_str == "float16":
        return torch.float16
    elif dtype_str == "bfloat16":
        return torch.bfloat16
    else:
        raise ValueError(f"Unsupported dtype string: {dtype_str}")


class DenseGeneral(nn.Module):
    """
    PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.

    Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
    for the generalized matrix multiplication. Weight/bias shapes are calculated
    and parameters created during initialization based on config.
    `load_weights` validates shapes and copies data.

    Attributes:
        axis (Tuple[int, ...]): Input axis or axes to contract.
        in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
        out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
        use_bias (bool): Whether to add a bias term.
        weight (nn.Parameter): The kernel parameter.
        bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
    """

    def __init__(
        self,
        in_shapes: tuple[int, ...],
        out_features: tuple[int, ...],
        axis: tuple[int, ...] = (-1,),
        dtype: torch.dtype | None = None,
        weight_dtype: torch.dtype | None = None,
        device: torch.device | None = None,
    ):
        super().__init__()
        self.in_shapes = in_shapes
        self.out_features = out_features
        self.axis = axis
        self.dtype = dtype
        self.kernel_shape = self.in_shapes + self.out_features

        factory_kwargs = {"device": device, "dtype": weight_dtype}
        self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
        self.register_parameter("bias", None)

    def forward(self, inputs: Tensor) -> Tensor:
        norm_axis = _normalize_axes(self.axis, inputs.ndim)
        kernel_contract_axes = tuple(range(len(norm_axis)))

        output = torch.tensordot(
            inputs.float(),
            self.weight.float(),
            dims=(norm_axis, kernel_contract_axes),
        ).to(inputs.dtype)
        return output


def get_activation_fn(activation_string: str) -> nn.Module:  # Return Module instance
    """Maps activation string to PyTorch activation function module."""
    if activation_string == "gelu":
        return nn.GELU()
    elif activation_string == "relu":
        return nn.ReLU()
    elif activation_string == "silu" or activation_string == "swish":
        return nn.SiLU()
    elif activation_string == "linear":
        return nn.Identity()
    else:
        raise ValueError(f"Unsupported activation function: {activation_string}")


class MlpBlock(nn.Module):
    """MLP block using DenseGeneral."""

    def __init__(
        self,
        config: DiaConfig,
        embed_dim: int,
        intermediate_dim: int,
        dropout_rate: float,
        activations: list[str] = ["silu", "linear"],
        use_pre_norm: bool = False,
    ):
        super().__init__()
        self.use_pre_norm = use_pre_norm
        num_activations = len(activations)
        compute_dtype = _str_to_dtype(config.training.dtype)
        weight_dtype = _str_to_dtype(config.model.weight_dtype)
        self.dtype = compute_dtype
        # Assume default device for now, could be passed in config

        if use_pre_norm:
            self.pre_norm = RMSNorm(
                embed_dim,
                eps=config.model.normalization_layer_epsilon,
                dtype=torch.float32,
            )

        self.wi_fused = DenseGeneral(
            in_shapes=(embed_dim,),
            out_features=(
                num_activations,
                intermediate_dim,
            ),
            axis=(-1,),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )

        self.activation_fn_0 = get_activation_fn(activations[0])  # silu
        self.activation_fn_1 = get_activation_fn(activations[1])  # linear

        self.dropout = nn.Dropout(dropout_rate)

        # Output layer using DenseGeneral
        self.wo = DenseGeneral(
            in_shapes=(intermediate_dim,),
            out_features=(embed_dim,),
            axis=(-1,),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )

    def forward(self, x: torch.Tensor, deterministic: bool) -> torch.Tensor:
        """Forward pass."""
        if self.use_pre_norm and hasattr(self, "pre_norm"):
            x = self.pre_norm(x)

        fused_x = self.wi_fused(x)

        gate_input = fused_x[..., 0, :]
        up_input = fused_x[..., 1, :]

        gate = self.activation_fn_0(gate_input)
        up = self.activation_fn_1(up_input)
        hidden = torch.mul(gate, up).to(self.dtype)

        if not deterministic:
            hidden = self.dropout(hidden)

        output = self.wo(hidden)
        return output


class RotaryEmbedding(nn.Module):
    """Rotary Position Embedding (RoPE) implementation in PyTorch."""

    def __init__(
        self,
        embedding_dims: int,
        min_timescale: int = 1,
        max_timescale: int = 10000,
        dtype: torch.dtype = torch.float32,
    ):
        super().__init__()
        if embedding_dims % 2 != 0:
            raise ValueError("Embedding dim must be even for RoPE.")
        self.embedding_dims = embedding_dims
        self.min_timescale = min_timescale
        self.max_timescale = max_timescale
        self.dtype = dtype

        half_embedding_dim = embedding_dims // 2
        fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
        self.register_buffer(
            "timescale",
            self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction,
            persistent=False,
        )

    def extra_repr(self) -> str:
        s = f"{self.timescale.shape}"
        return s

    def forward(self, inputs: torch.Tensor, position: torch.Tensor):
        """Applies RoPE."""
        position = position.unsqueeze(-1).unsqueeze(-1)
        timescale = self.timescale.to(inputs.device)
        sinusoid_inp = position / timescale
        sin = torch.sin(sinusoid_inp).to(inputs.dtype)
        cos = torch.cos(sinusoid_inp).to(inputs.dtype)
        first_half, second_half = torch.chunk(inputs, 2, dim=-1)
        first_part = first_half * cos - second_half * sin
        second_part = second_half * cos + first_half * sin
        return torch.cat((first_part, second_part), dim=-1)


class KVCache:
    def __init__(self, num_heads, max_len, head_dim, device, k=None, v=None):
        self.k = torch.zeros((2, num_heads, max_len, head_dim), device=device) if k is None else k
        self.v = torch.zeros((2, num_heads, max_len, head_dim), device=device) if v is None else v
        self.current_idx = 0
        self.max_len = max_len

    def get_kv_for_attention(self, current_k, current_v):
        if self.current_idx == 0:
            return current_k, current_v
        else:
            past_k = self.k[:, :, : self.current_idx, :]
            past_v = self.v[:, :, : self.current_idx, :]
            attn_k = torch.cat((past_k, current_k), dim=2)
            attn_v = torch.cat((past_v, current_v), dim=2)
            return attn_k, attn_v

    def update_cache(self, k, v):
        assert self.current_idx < self.max_len
        self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
        self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
        self.current_idx += 1

    def prefill_kv(self, k, v):
        prefill_len = k.shape[2]
        assert prefill_len <= self.max_len
        self.k[:, :, :prefill_len, :] = k
        self.v[:, :, :prefill_len, :] = v
        self.current_idx = prefill_len


class Attention(nn.Module):
    """Attention using DenseGeneral."""

    def __init__(
        self,
        config: DiaConfig,
        q_embed_dim: int,
        kv_embed_dim: int,
        num_query_heads: int,
        num_kv_heads: int,
        head_dim: int,
        dropout_rate: float,
        is_cross_attn: bool = False,
        out_embed_dim: int | None = None,
    ):
        super().__init__()
        self.num_query_heads = num_query_heads
        self.num_kv_heads = num_kv_heads
        self.head_dim = head_dim
        self.is_cross_attn = is_cross_attn
        self.dropout_rate = dropout_rate
        compute_dtype = _str_to_dtype(config.training.dtype)
        weight_dtype = _str_to_dtype(config.model.weight_dtype)
        self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
        self.projected_query_dim = num_query_heads * head_dim
        if num_query_heads % num_kv_heads != 0:
            raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
        self.num_gqa_groups = num_query_heads // num_kv_heads

        # --- Projection Layers using DenseGeneral ---
        self.q_proj = DenseGeneral(
            in_shapes=(q_embed_dim,),
            out_features=(num_query_heads, head_dim),
            axis=(-1,),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )
        self.k_proj = DenseGeneral(
            in_shapes=(kv_embed_dim,),
            out_features=(num_kv_heads, head_dim),
            axis=(-1,),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )
        self.v_proj = DenseGeneral(
            in_shapes=(kv_embed_dim,),
            out_features=(num_kv_heads, head_dim),
            axis=(-1,),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )
        self.o_proj = DenseGeneral(
            in_shapes=(num_query_heads, head_dim),
            out_features=(self.output_dim,),
            axis=(-2, -1),
            dtype=compute_dtype,
            weight_dtype=weight_dtype,
        )

        # --- Rotary Embedding ---
        self.rotary_emb = RotaryEmbedding(
            embedding_dims=self.head_dim,
            min_timescale=config.model.rope_min_timescale,
            max_timescale=config.model.rope_max_timescale,
            dtype=compute_dtype,
        )

    def forward(
        self,
        Xq: torch.Tensor,  # (B, T, D) T = 1 in AR generation
        Xkv: torch.Tensor,  # (B, S, E) S = 1 in AR generation
        q_positions: torch.Tensor,  # (B, T)
        kv_positions: torch.Tensor | None = None,  # (B, S)
        deterministic: bool = True,
        attn_mask: torch.Tensor | None = None,  # None in Decoder Self Attention, Valid mask in Others
        cache: KVCache | None = None,  # None in Encoder, KVCache in Decoder
        prefill: bool = False,  # True only when prefilling KV Cache
    ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
        """
        Performs attention calculation with optional KV caching.

        Args:
            Xq: Query tensor (B, T, D). T=1 during single-step decoding.
            Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
            q_positions: Positions for queries (B, T).
            kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
            deterministic: If True, disable dropout.
            attn_mask: Attention mask.
            cache: KVCache.
            prefill: If True, use prefill mode.

        Returns:
            A tuple containing:
            - output: The attention output tensor (B, T, output_dim).
            - present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
        """
        if kv_positions is None:
            kv_positions = q_positions
        original_dtype = Xq.dtype

        Xq_BxTxNxH = self.q_proj(Xq)
        Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
        Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)

        # Input values into attention calculation
        attn_k: torch.Tensor | None = None
        attn_v: torch.Tensor | None = None
        new_kv_cache: tuple[torch.Tensor, torch.Tensor] | None = None

        # Decoder Cross Attention
        if self.is_cross_attn:
            # Directly use cache (no need to check index)
            attn_k, attn_v = cache.k, cache.v
            if attn_k.shape[1] != self.num_query_heads or attn_v.shape[1] != self.num_query_heads:
                raise ValueError(
                    f"Cross-attention cache head dimension ({attn_k.shape[1]}) "
                    f"does not match num_query_heads ({self.num_query_heads}). "
                    "Cache should be pre-repeated for GQA."
                )
        # Self Attention
        else:
            Xk_BxSxKxH = self.k_proj(Xkv)  # (B, S, K, H)
            Xv_BxSxKxH = self.v_proj(Xkv)  # (B, S, K, H)
            Xk_BxSxKxH = self.rotary_emb(Xk_BxSxKxH, position=kv_positions)  # (B, S, K, H)

            Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2)  # (B, K, S, H)
            Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2)  # (B, K, S, H)
            # S=1 for Decode Step

            if self.num_gqa_groups > 1:
                Xk_BxNxSxH = Xk_BxKxSxH.repeat_interleave(self.num_gqa_groups, dim=1)
                Xv_BxNxSxH = Xv_BxKxSxH.repeat_interleave(self.num_gqa_groups, dim=1)
            else:
                Xk_BxNxSxH = Xk_BxKxSxH
                Xv_BxNxSxH = Xv_BxKxSxH

            # Encoder Self Attention
            if cache is None:
                attn_k = Xk_BxNxSxH
                attn_v = Xv_BxNxSxH
            # Decoder Self Attention
            else:
                # In prefill mode, we fill in cache until prefill length
                if prefill:
                    attn_k, attn_v = Xk_BxNxSxH, Xv_BxNxSxH
                    cache.prefill_kv(attn_k, attn_v)
                # In decode step, we add current K/V to cache step by step
                else:
                    new_kv_cache = Xk_BxNxSxH, Xv_BxNxSxH
                    attn_k, attn_v = cache.get_kv_for_attention(Xk_BxNxSxH, Xv_BxNxSxH)

        attn_output = F.scaled_dot_product_attention(
            Xq_BxNxTxH,
            attn_k,
            attn_v,
            attn_mask=attn_mask,
            dropout_p=self.dropout_rate if not deterministic else 0.0,
            scale=1.0,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()  # (B, T, N, H)
        output = self.o_proj(attn_output)

        return output.to(original_dtype), new_kv_cache


class EncoderLayer(nn.Module):
    """Transformer Encoder Layer using DenseGeneral."""

    def __init__(self, config: DiaConfig):
        super().__init__()
        self.config = config
        model_config = config.model
        enc_config = config.model.encoder
        embed_dim = enc_config.n_embd

        self.pre_sa_norm = RMSNorm(
            embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.self_attention = Attention(
            config=config,
            q_embed_dim=embed_dim,
            kv_embed_dim=embed_dim,
            num_query_heads=enc_config.n_head,
            num_kv_heads=enc_config.n_head,
            head_dim=enc_config.head_dim,
            dropout_rate=model_config.dropout,
            is_cross_attn=False,
            out_embed_dim=embed_dim,
        )
        self.post_sa_norm = RMSNorm(
            embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.mlp = MlpBlock(
            config=config,
            embed_dim=embed_dim,
            intermediate_dim=enc_config.n_hidden,
            activations=enc_config.mlp_activations,
            dropout_rate=model_config.dropout,
            use_pre_norm=enc_config.use_pre_norm,
        )
        self.dropout = nn.Dropout(model_config.dropout)

    def forward(
        self,
        x: torch.Tensor,
        src_positions: torch.Tensor | None = None,
        deterministic: bool = True,
        attn_mask: torch.Tensor | None = None,
    ) -> torch.Tensor:
        residual = x
        x_norm = self.pre_sa_norm(x)

        sa_out, _ = self.self_attention(
            Xq=x_norm,
            Xkv=x_norm,
            q_positions=src_positions,
            kv_positions=src_positions,
            deterministic=deterministic,
            attn_mask=attn_mask,
        )
        x = residual + sa_out

        residual = x
        x_norm = self.post_sa_norm(x)
        mlp_out = self.mlp(x_norm, deterministic=deterministic)
        x = residual + mlp_out

        if not deterministic:
            x = self.dropout(x)
        return x


class Encoder(nn.Module):
    """Transformer Encoder Stack using DenseGeneral."""

    def __init__(self, config: DiaConfig):
        super().__init__()
        self.config = config
        model_config = config.model
        enc_config = config.model.encoder
        compute_dtype = _str_to_dtype(config.training.dtype)

        self.embedding = nn.Embedding(
            model_config.src_vocab_size,
            enc_config.n_embd,
            dtype=compute_dtype,
        )
        self.dropout = nn.Dropout(model_config.dropout)
        self.layers = nn.ModuleList([EncoderLayer(config=config) for _ in range(enc_config.n_layer)])
        self.norm = RMSNorm(
            enc_config.n_embd,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

    def forward(
        self,
        x_ids: torch.Tensor,
        src_positions: torch.Tensor | None = None,
        deterministic: bool = True,
        attn_mask: torch.Tensor | None = None,
    ) -> torch.Tensor:
        x = self.embedding(x_ids)

        if not deterministic:
            x = self.dropout(x)

        for layer in self.layers:
            x = layer(
                x,
                src_positions=src_positions,
                deterministic=deterministic,
                attn_mask=attn_mask,
            )
        x = self.norm(x)
        if not deterministic:
            x = self.dropout(x)
        return x


class DecoderLayer(nn.Module):
    """Transformer Decoder Layer using DenseGeneral."""

    def __init__(self, config: DiaConfig):
        super().__init__()
        self.config = config
        model_config = config.model
        dec_config = config.model.decoder
        enc_config = config.model.encoder
        dec_embed_dim = dec_config.n_embd
        enc_embed_dim = enc_config.n_embd

        # Norms
        self.pre_sa_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.pre_ca_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )
        self.pre_mlp_norm = RMSNorm(
            dec_embed_dim,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

        # Self-Attention (GQA) with Causal Masking
        self.self_attention = Attention(
            config=config,
            q_embed_dim=dec_embed_dim,
            kv_embed_dim=dec_embed_dim,
            num_query_heads=dec_config.gqa_query_heads,
            num_kv_heads=dec_config.kv_heads,
            head_dim=dec_config.gqa_head_dim,
            dropout_rate=model_config.dropout,
            is_cross_attn=False,
            out_embed_dim=dec_embed_dim,
        )
        # Cross-Attention (MHA)
        self.cross_attention = Attention(
            config=config,
            q_embed_dim=dec_embed_dim,
            kv_embed_dim=enc_embed_dim,  # Note kv_embed_dim
            num_query_heads=dec_config.cross_query_heads,
            num_kv_heads=dec_config.cross_query_heads,
            head_dim=dec_config.cross_head_dim,
            dropout_rate=model_config.dropout,
            is_cross_attn=True,
            out_embed_dim=dec_embed_dim,
        )
        # MLP
        self.mlp = MlpBlock(
            config=config,
            embed_dim=dec_embed_dim,
            intermediate_dim=dec_config.n_hidden,
            activations=dec_config.mlp_activations,
            dropout_rate=model_config.dropout,
            use_pre_norm=dec_config.use_pre_norm,
        )

    def forward(
        self,
        x: torch.Tensor,
        encoder_out: torch.Tensor,
        tgt_positions: torch.Tensor,
        src_positions: torch.Tensor | None,
        deterministic: bool,
        self_attn_mask: torch.Tensor,
        cross_attn_mask: torch.Tensor,
        self_attn_cache: KVCache,
        cross_attn_cache: KVCache,
        prefill: bool = False,
    ) -> torch.Tensor:
        residual = x
        x_norm = self.pre_sa_norm(x)

        sa_out, new_kv_cache = self.self_attention(
            Xq=x_norm,  # (2, 1, D)
            Xkv=x_norm,  # (2, 1, D)
            q_positions=tgt_positions,  # (2, 1)
            kv_positions=tgt_positions,  # (2, 1)
            deterministic=deterministic,
            attn_mask=self_attn_mask,  # (2, 1, 1, S_max)
            cache=self_attn_cache,
            prefill=prefill,
        )

        x = residual + sa_out

        # 2. Cross-Attention
        residual = x
        x_norm = self.pre_ca_norm(x)
        ca_out, _ = self.cross_attention(
            Xq=x_norm,
            Xkv=encoder_out,
            q_positions=tgt_positions,
            kv_positions=src_positions,
            deterministic=deterministic,
            attn_mask=cross_attn_mask,
            cache=cross_attn_cache,
        )
        x = residual + ca_out

        # 3. MLP
        residual = x
        x_norm = self.pre_mlp_norm(x)
        mlp_out = self.mlp(x_norm, deterministic=deterministic)
        x = residual + mlp_out

        return x, new_kv_cache


class Decoder(nn.Module):
    """Transformer Decoder Stack using DenseGeneral."""

    def __init__(self, config: DiaConfig):
        super().__init__()
        self.config = config
        model_config = config.model
        dec_config = config.model.decoder
        train_config = config.training
        data_config = config.data
        compute_dtype = _str_to_dtype(config.training.dtype)
        weight_dtype = _str_to_dtype(config.model.weight_dtype)
        self.num_channels = data_config.channels
        self.num_layers = dec_config.n_layer

        self.embeddings = nn.ModuleList(
            [
                nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype)
                for _ in range(self.num_channels)
            ]
        )
        self.dropout = nn.Dropout(model_config.dropout)
        self.layers = nn.ModuleList([DecoderLayer(config=config) for _ in range(self.num_layers)])
        self.norm = RMSNorm(
            dec_config.n_embd,
            eps=model_config.normalization_layer_epsilon,
            dtype=torch.float32,
        )

        # Final Logits Projection using DenseGeneral
        self.logits_dense = DenseGeneral(
            in_shapes=(dec_config.n_embd,),
            out_features=(self.num_channels, model_config.tgt_vocab_size),
            axis=(-1,),
            dtype=(torch.float32 if train_config.logits_dot_in_fp32 else compute_dtype),
            weight_dtype=weight_dtype,
        )
        self.logits_in_fp32 = train_config.logits_dot_in_fp32

    def precompute_cross_attention_kv(
        self,
        max_len: int,
        encoder_out: torch.Tensor,  # (B, S, E)
        src_positions: torch.Tensor | None,  # (B, S)
    ) -> list[KVCache]:
        """
        Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
        """
        per_layer_kv_cache: list[KVCache] = []

        for layer in self.layers:
            cross_attn_module = layer.cross_attention
            k_proj = cross_attn_module.k_proj(encoder_out)
            v_proj = cross_attn_module.v_proj(encoder_out)

            k_proj = cross_attn_module.rotary_emb(k_proj, position=src_positions)
            k = k_proj.transpose(1, 2)
            v = v_proj.transpose(1, 2)

            per_layer_kv_cache.append(
                KVCache(
                    cross_attn_module.num_kv_heads,
                    max_len,
                    cross_attn_module.head_dim,
                    k.device,
                    k=k,
                    v=v,
                )
            )

        return per_layer_kv_cache

    def decode_step(
        self,
        tgt_ids_Bx1xC: torch.Tensor,  # [B, 1, C]
        tgt_pos_Bx1: torch.Tensor,  # [B, 1]
        encoder_out: torch.Tensor,  # [B, S, E]
        self_attn_mask: Any,  # None
        cross_attn_mask: torch.Tensor,  # [B, 1, 1, S]
        self_attention_cache: list[KVCache],
        cross_attention_cache: list[KVCache],
    ) -> torch.Tensor:
        """
        Performs a single decoding step, managing KV caches layer by layer.

        Returns:
            A tuple containing:
            - logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
        """
        assert self_attn_mask is None, "Self-attention mask should be None, kept for pattern"

        x = None
        for i in range(self.num_channels):
            channel_tokens = tgt_ids_Bx1xC[..., i]
            channel_embed = self.embeddings[i](channel_tokens)
            x = channel_embed if x is None else x + channel_embed

        new_cache = []

        for i, layer in enumerate(self.layers):
            self_cache = self_attention_cache[i]
            cross_cache = cross_attention_cache[i]
            x, new_kv_cache = layer(
                x,  # (2, 1, D)
                encoder_out,  # (2, S, E)
                src_positions=None,  # CA KV is already computed
                tgt_positions=tgt_pos_Bx1,  # (2, 1)
                deterministic=True,
                self_attn_mask=None,
                cross_attn_mask=cross_attn_mask,
                self_attn_cache=self_cache,
                cross_attn_cache=cross_cache,
            )
            new_cache.append(new_kv_cache)

        x = self.norm(x)
        logits_Bx1xCxV = self.logits_dense(x)

        return logits_Bx1xCxV.to(torch.float32), new_cache

    def forward(
        self,
        tgt_ids_BxTxC: torch.Tensor,
        encoder_out: torch.Tensor,
        tgt_positions: torch.Tensor,
        src_positions: torch.Tensor,
        deterministic: bool,
        self_attn_mask: torch.Tensor,
        cross_attn_mask: torch.Tensor,
        self_attention_cache: list[KVCache],
        cross_attention_cache: list[KVCache],
    ) -> torch.Tensor:
        """
        Forward pass for the Decoder stack, managing KV caches.

        Args:
            tgt_ids_BxTxC: Target token IDs (B, T, C).
            encoder_out: Output from the encoder (B, S, E).
            tgt_positions: Positions for target sequence (B, T).
            src_positions: Positions for source sequence (B, S).
            deterministic: Disable dropout if True.
            self_attn_mask: Mask for self-attention.
            cross_attn_mask: Mask for cross-attention.
            past_key_values: List containing the self-attention KV cache for each layer
                             from the previous decoding step. `len(past_key_values)` should
                             equal `num_layers`.
            precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
                                      derived from `encoder_out`. This is passed identically
                                      to all layers.

        Returns:
            A tuple containing:
            - logits: The final output logits (B, T, C * V), cast to float32.
            - present_key_values: A list containing the updated self-attention KV cache
                                 for each layer for the *current* decoding step.
        """
        _, _, num_channels_in = tgt_ids_BxTxC.shape
        assert num_channels_in == self.num_channels, "Input channels mismatch"

        # Embeddings
        x = None
        for i in range(self.num_channels):
            channel_tokens = tgt_ids_BxTxC[..., i]
            channel_embed = self.embeddings[i](channel_tokens)
            x = channel_embed if x is None else x + channel_embed

        if not deterministic:
            x = self.dropout(x)

        for i, layer in enumerate(self.layers):
            x, _ = layer(
                x,
                encoder_out,
                tgt_positions=tgt_positions,
                src_positions=src_positions,
                deterministic=deterministic,
                self_attn_mask=self_attn_mask,
                cross_attn_mask=cross_attn_mask,
                self_attn_cache=self_attention_cache[i],
                cross_attn_cache=cross_attention_cache[i],
                prefill=True,
            )

        # Final Norm
        x = self.norm(x)
        logits_BxTxCxV = self.logits_dense(x)

        return logits_BxTxCxV.to(torch.float32)


class DiaModel(nn.Module):
    """PyTorch Dia Model using DenseGeneral."""

    def __init__(self, config: DiaConfig):
        super().__init__()
        self.config = config
        self.encoder = Encoder(config)
        self.decoder = Decoder(config)

    def forward(
        self,
        src_BxS: torch.Tensor,
        tgt_BxTxC: torch.Tensor,
        src_positions: torch.Tensor | None = None,
        tgt_positions: torch.Tensor | None = None,
        enc_self_attn_mask: torch.Tensor | None = None,
        dec_self_attn_mask: torch.Tensor | None = None,
        dec_cross_attn_mask: torch.Tensor | None = None,
        enable_dropout: bool = True,
    ):
        deterministic = not enable_dropout

        # --- Encoder Pass ---
        encoder_out = self.encoder(
            x_ids=src_BxS,
            src_positions=src_positions,
            deterministic=deterministic,
            attn_mask=enc_self_attn_mask,
        )

        # --- Decoder Pass ---
        logits, _ = self.decoder(
            tgt_ids_BxTxC=tgt_BxTxC,
            encoder_out=encoder_out,
            tgt_positions=tgt_positions,
            src_positions=src_positions,
            deterministic=deterministic,
            self_attn_mask=dec_self_attn_mask,
            cross_attn_mask=dec_cross_attn_mask,
            precomputed_cross_attn_kv=None,
        )

        return logits