Spaces:
Paused
Paused
File size: 4,648 Bytes
1e1a292 c495d6b 7ad3aff 5fef1f4 7ad3aff c495d6b 1e1a292 c495d6b 1e1a292 0454d85 1e1a292 0454d85 1e1a292 0454d85 1e1a292 0454d85 1e1a292 0454d85 c495d6b 1e1a292 c495d6b a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
from keras_cv import models
from tensorflow import keras
keras_model_list = [
"keras-dreambooth/keras_diffusion_lowpoly_world",
"keras-dreambooth/pink-floyd-division-bell",
"keras-dreambooth/dreambooth_diffusion_model",
]
stable_prompt_list = [
"a photo of lowpoly_world",
"Flower vase inspired by pink floyd division bell",
]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
def keras_stable_diffusion(
model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
):
with tf.device("/GPU:0"):
keras.mixed_precision.set_global_policy("mixed_float16")
sd_dreambooth_model = models.StableDiffusion(
img_width=height, img_height=width
)
db_diffusion_model = from_pretrained_keras(model_path)
sd_dreambooth_model._diffusion_model = db_diffusion_model
generated_images = sd_dreambooth_model.text_to_image(
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_inference_step,
unconditional_guidance_scale=guidance_scale,
)
return generated_images
def keras_stable_diffusion_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
keras_text2image_model_path = gr.Dropdown(
choices=keras_model_list,
value=keras_model_list[0],
label="Text-Image Model Id",
)
keras_text2image_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
keras_text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
keras_text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
keras_text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
keras_text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
keras_text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
keras_text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(label="Output")
gr.Examples(
fn=keras_stable_diffusion,
inputs=[
keras_text2image_model_path,
keras_text2image_prompt,
keras_text2image_negative_prompt,
keras_text2image_guidance_scale,
keras_text2image_num_inference_step,
keras_text2image_height,
keras_text2image_width,
],
outputs=[output_image],
examples=[
[
keras_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
512,
512,
],
],
label="Keras Stable Diffusion Example",
cache_examples=False,
)
keras_text2image_predict.click(
fn=keras_stable_diffusion,
inputs=[
keras_text2image_model_path,
keras_text2image_prompt,
keras_text2image_negative_prompt,
keras_text2image_guidance_scale,
keras_text2image_num_inference_step,
keras_text2image_height,
keras_text2image_width,
],
outputs=output_image,
)
|