from flask import Flask, request, jsonify, Response, render_template_string, render_template, redirect, url_for, session as flask_session
import requests
import time
import json
import uuid
import random
import io
import re
from functools import wraps
import hashlib
import jwt
import os
import threading
from datetime import datetime, timedelta
app = Flask(__name__, template_folder='templates')
app.secret_key = os.environ.get("SECRET_KEY", "abacus_chat_proxy_secret_key")
app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(days=7)
# 添加tokenizer服务URL
TOKENIZER_SERVICE_URL = "https://malt666-tokenizer.hf.space/count_tokens"
API_ENDPOINT_URL = "https://abacus.ai/api/v0/describeDeployment"
MODEL_LIST_URL = "https://abacus.ai/api/v0/listExternalApplications"
CHAT_URL = "https://apps.abacus.ai/api/_chatLLMSendMessageSSE"
USER_INFO_URL = "https://abacus.ai/api/v0/_getUserInfo"
COMPUTE_POINTS_URL = "https://apps.abacus.ai/api/_getOrganizationComputePoints"
COMPUTE_POINTS_LOG_URL = "https://abacus.ai/api/v0/_getOrganizationComputePointLog"
CREATE_CONVERSATION_URL = "https://apps.abacus.ai/api/createDeploymentConversation"
DELETE_CONVERSATION_URL = "https://apps.abacus.ai/api/deleteDeploymentConversation"
GET_CONVERSATION_URL = "https://apps.abacus.ai/api/getDeploymentConversation"
COMPUTE_POINT_TOGGLE_URL = "https://abacus.ai/api/v0/_updateOrganizationComputePointToggle"
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
]
PASSWORD = None
USER_NUM = 0
USER_DATA = []
CURRENT_USER = -1
MODELS = set()
# 添加线程锁用于保护 CURRENT_USER 的访问
user_selection_lock = threading.Lock()
TRACE_ID = "3042e28b3abf475d8d973c7e904935af"
SENTRY_TRACE = f"{TRACE_ID}-80d9d2538b2682d0"
# 添加一个计数器记录健康检查次数
health_check_counter = 0
# 添加统计变量
model_usage_stats = {} # 模型使用次数统计
total_tokens = {
"prompt": 0, # 输入token统计
"completion": 0, # 输出token统计
"total": 0 # 总token统计
}
# 模型调用记录
model_usage_records = [] # 每次调用详细记录
MODEL_USAGE_RECORDS_FILE = "model_usage_records.json" # 调用记录保存文件
# 计算点信息
compute_points = {
"left": 0, # 剩余计算点
"total": 0, # 总计算点
"used": 0, # 已使用计算点
"percentage": 0, # 使用百分比
"last_update": None # 最后更新时间
}
# 计算点使用日志
compute_points_log = {
"columns": {}, # 列名
"log": [] # 日志数据
}
# 多用户计算点信息
users_compute_points = []
# 记录启动时间
START_TIME = datetime.utcnow() + timedelta(hours=8) # 北京时间
# 自定义JSON编码器,处理datetime对象
class DateTimeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%d %H:%M:%S')
return super(DateTimeEncoder, self).default(obj)
# 加载模型调用记录
def load_model_usage_records():
global model_usage_records
try:
if os.path.exists(MODEL_USAGE_RECORDS_FILE):
with open(MODEL_USAGE_RECORDS_FILE, 'r', encoding='utf-8') as f:
records = json.load(f)
if isinstance(records, list):
model_usage_records = records
print(f"成功加载 {len(model_usage_records)} 条模型调用记录")
else:
print("调用记录文件格式不正确,初始化为空列表")
except Exception as e:
print(f"加载模型调用记录失败: {e}")
model_usage_records = []
# 保存模型调用记录
def save_model_usage_records():
try:
with open(MODEL_USAGE_RECORDS_FILE, 'w', encoding='utf-8') as f:
json.dump(model_usage_records, f, ensure_ascii=False, indent=2, cls=DateTimeEncoder)
print(f"成功保存 {len(model_usage_records)} 条模型调用记录")
except Exception as e:
print(f"保存模型调用记录失败: {e}")
def update_conversation_id(user_index, conversation_id):
"""更新用户的conversation_id并保存到配置文件"""
try:
with open("config.json", "r") as f:
config = json.load(f)
if "config" in config and user_index < len(config["config"]):
config["config"][user_index]["conversation_id"] = conversation_id
# 保存到配置文件
with open("config.json", "w") as f:
json.dump(config, f, indent=4)
print(f"已将用户 {user_index+1} 的conversation_id更新为: {conversation_id}")
else:
print(f"更新conversation_id失败: 配置文件格式错误或用户索引越界")
except Exception as e:
print(f"更新conversation_id失败: {e}")
def resolve_config():
# 从环境变量读取多组配置
config_list = []
i = 1
while True:
cookie = os.environ.get(f"cookie_{i}")
if not cookie:
break
# 为每个cookie创建一个配置项,conversation_id初始为空
config_list.append({
"conversation_id": "", # 初始为空,将通过get_or_create_conversation自动创建
"cookies": cookie
})
i += 1
# 如果环境变量存在配置,使用环境变量的配置
if config_list:
print(f"从环境变量加载了 {len(config_list)} 个配置")
return config_list
# 如果环境变量不存在,从文件读取
try:
with open("config.json", "r") as f:
config = json.load(f)
config_list = config.get("config")
return config_list
except FileNotFoundError:
print("未找到config.json文件")
return []
except json.JSONDecodeError:
print("config.json格式错误")
return []
def get_password():
global PASSWORD
# 从环境变量读取密码
env_password = os.environ.get("password")
if env_password:
PASSWORD = hashlib.sha256(env_password.encode()).hexdigest()
return
# 如果环境变量不存在,从文件读取
try:
with open("password.txt", "r") as f:
PASSWORD = f.read().strip()
except FileNotFoundError:
with open("password.txt", "w") as f:
PASSWORD = None
def require_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if not PASSWORD:
return f(*args, **kwargs)
# 检查Flask会话是否已登录
if flask_session.get('logged_in'):
return f(*args, **kwargs)
# 如果是API请求,检查Authorization头
auth = request.authorization
if not auth or not check_auth(auth.token):
# 如果是浏览器请求,重定向到登录页面
if request.headers.get('Accept', '').find('text/html') >= 0:
return redirect(url_for('login'))
return jsonify({"error": "Unauthorized access"}), 401
return f(*args, **kwargs)
return decorated
def check_auth(token):
return hashlib.sha256(token.encode()).hexdigest() == PASSWORD
def is_token_expired(token):
if not token:
return True
try:
# Malkodi tokenon sen validigo de subskribo
payload = jwt.decode(token, options={"verify_signature": False})
# Akiru eksvalidiĝan tempon, konsideru eksvalidiĝinta 5 minutojn antaŭe
return payload.get('exp', 0) - time.time() < 300
except:
return True
def refresh_token(session, cookies):
"""Uzu kuketon por refreŝigi session token, nur revenigu novan tokenon"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
try:
response = session.post(
USER_INFO_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code == 200:
response_data = response.json()
if response_data.get('success') and 'sessionToken' in response_data.get('result', {}):
return response_data['result']['sessionToken']
else:
print(f"刷新token失败: {response_data.get('error', '未知错误')}")
return None
else:
print(f"刷新token失败,状态码: {response.status_code}")
return None
except Exception as e:
print(f"刷新token异常: {e}")
return None
def get_model_map(session, cookies, session_token):
"""Akiru disponeblan modelan liston kaj ĝiajn mapajn rilatojn"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
if session_token:
headers["session-token"] = session_token
model_map = {}
models_set = set()
try:
response = session.post(
MODEL_LIST_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code != 200:
print(f"获取模型列表失败,状态码: {response.status_code}")
raise Exception("API请求失败")
data = response.json()
if not data.get('success'):
print(f"获取模型列表失败: {data.get('error', '未知错误')}")
raise Exception("API返回错误")
applications = []
if isinstance(data.get('result'), dict):
applications = data.get('result', {}).get('externalApplications', [])
elif isinstance(data.get('result'), list):
applications = data.get('result', [])
for app in applications:
app_name = app.get('name', '')
app_id = app.get('externalApplicationId', '')
prediction_overrides = app.get('predictionOverrides', {})
llm_name = prediction_overrides.get('llmName', '') if prediction_overrides else ''
if not (app_name and app_id and llm_name):
continue
model_name = app_name
model_map[model_name] = (app_id, llm_name)
models_set.add(model_name)
if not model_map:
raise Exception("未找到任何可用模型")
return model_map, models_set
except Exception as e:
print(f"获取模型列表异常: {e}")
raise
def init_session():
get_password()
global USER_NUM, MODELS, USER_DATA
config_list = resolve_config()
user_num = len(config_list)
all_models = set()
for i in range(user_num):
user = config_list[i]
cookies = user.get("cookies")
conversation_id = user.get("conversation_id")
session = requests.Session()
session_token = refresh_token(session, cookies)
if not session_token:
print(f"无法获取cookie {i+1}的token")
continue
try:
model_map, models_set = get_model_map(session, cookies, session_token)
all_models.update(models_set)
USER_DATA.append((session, cookies, session_token, conversation_id, model_map, i))
# 对第一个成功配置的用户,初始化计算点数记录功能
if i == 0:
try:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"session-token": session_token
}
response = session.post(
COMPUTE_POINT_TOGGLE_URL,
headers=headers,
json={"alwaysDisplay": True},
cookies=None
)
if response.status_code == 200:
result = response.json()
if result.get("success"):
print("成功初始化计算点数记录功能为开启状态")
else:
print(f"初始化计算点数记录功能失败: {result.get('error', '未知错误')}")
else:
print(f"初始化计算点数记录功能失败,状态码: {response.status_code}")
except Exception as e:
print(f"初始化计算点数记录功能时出错: {e}")
except Exception as e:
print(f"配置用户 {i+1} 失败: {e}")
continue
USER_NUM = len(USER_DATA)
if USER_NUM == 0:
print("No user available, exiting...")
exit(1)
MODELS = all_models
print(f"启动完成,共配置 {USER_NUM} 个用户")
def update_cookie(session, cookies):
cookie_jar = {}
for key, value in session.cookies.items():
cookie_jar[key] = value
cookie_dict = {}
for item in cookies.split(";"):
key, value = item.strip().split("=", 1)
cookie_dict[key] = value
cookie_dict.update(cookie_jar)
cookies = "; ".join([f"{key}={value}" for key, value in cookie_dict.items()])
return cookies
user_data = init_session()
@app.route("/v1/models", methods=["GET"])
@require_auth
def get_models():
if len(MODELS) == 0:
return jsonify({"error": "No models available"}), 500
model_list = []
for model in MODELS:
model_list.append(
{
"id": model,
"object": "model",
"created": int(time.time()),
"owned_by": "Elbert",
"name": model,
}
)
return jsonify({"object": "list", "data": model_list})
@app.route("/v1/chat/completions", methods=["POST"])
@require_auth
def chat_completions():
openai_request = request.get_json()
stream = openai_request.get("stream", False)
messages = openai_request.get("messages")
if messages is None:
return jsonify({"error": "Messages is required", "status": 400}), 400
model = openai_request.get("model")
if model not in MODELS:
return (
jsonify(
{
"error": "Model not available, check if it is configured properly",
"status": 404,
}
),
404,
)
message = format_message(messages)
think = (
openai_request.get("think", False) if model == "Claude Sonnet 3.7" else False
)
return (
send_message(message, model, think)
if stream
else send_message_non_stream(message, model, think)
)
def get_user_data():
global CURRENT_USER
# 使用锁确保线程安全
with user_selection_lock:
CURRENT_USER = (CURRENT_USER + 1) % USER_NUM
current_user_index_local = CURRENT_USER # 本地副本,避免锁外访问全局变量
print(f"使用配置 {current_user_index_local+1}")
# Akiru uzantajn datumojn (使用本地索引)
session, cookies, session_token, conversation_id, model_map, user_index = USER_DATA[current_user_index_local]
# Kontrolu ĉu la tokeno eksvalidiĝis, se jes, refreŝigu ĝin
if is_token_expired(session_token):
print(f"Cookie {current_user_index_local+1}的token已过期或即将过期,正在刷新...")
new_token = refresh_token(session, cookies)
if new_token:
# Ĝisdatigu la globale konservitan tokenon (加锁保护写入)
with user_selection_lock:
# 重新获取最新的 USER_DATA 状态再更新
_session, _cookies, _, _conv_id, _model_map, _user_idx = USER_DATA[current_user_index_local]
USER_DATA[current_user_index_local] = (_session, _cookies, new_token, _conv_id, _model_map, _user_idx)
session_token = new_token # 更新函数内部使用的token
print(f"成功更新token: {session_token[:15]}...{session_token[-15:]}")
else:
print(f"警告:无法刷新Cookie {current_user_index_local+1}的token,继续使用当前token")
# 返回获取到的数据 (使用本地索引)
return (session, cookies, session_token, conversation_id, model_map, user_index)
def create_conversation(session, cookies, session_token, external_application_id=None, deployment_id=None):
"""创建新的会话"""
if not (external_application_id and deployment_id):
print("无法创建新会话: 缺少必要参数")
return None
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"cookie": cookies,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
create_payload = {
"deploymentId": deployment_id,
"name": "New Chat",
"externalApplicationId": external_application_id
}
try:
response = session.post(
CREATE_CONVERSATION_URL,
headers=headers,
json=create_payload
)
if response.status_code == 200:
data = response.json()
if data.get("success", False):
new_conversation_id = data.get("result", {}).get("deploymentConversationId")
if new_conversation_id:
print(f"成功创建新的conversation: {new_conversation_id}")
return new_conversation_id
print(f"创建会话失败: {response.status_code} - {response.text[:100]}")
return None
except Exception as e:
print(f"创建会话时出错: {e}")
return None
def delete_conversation(session, cookies, session_token, conversation_id, deployment_id="14b2a314cc"):
"""删除指定的对话"""
if not conversation_id:
print("无法删除对话: 缺少conversation_id")
return False
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"cookie": cookies,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
delete_payload = {
"deploymentId": deployment_id,
"deploymentConversationId": conversation_id
}
try:
response = session.post(
DELETE_CONVERSATION_URL,
headers=headers,
json=delete_payload
)
if response.status_code == 200:
data = response.json()
if data.get("success", False):
print(f"成功删除对话: {conversation_id}")
return True
print(f"删除对话失败: {response.status_code} - {response.text[:100]}")
return False
except Exception as e:
print(f"删除对话时出错: {e}")
return False
def get_or_create_conversation(session, cookies, session_token, conversation_id, model_map, model, user_index):
"""获取对话ID,如果不存在则创建;返回是否是使用现有会话"""
print(f"\n----- 获取会话ID (用户 {user_index+1}) -----")
# 如果有现有的会话ID,直接使用
if conversation_id:
print(f"使用现有会话ID: {conversation_id}")
return conversation_id, True
# 如果没有会话ID,创建新的
print("没有会话ID,创建新会话...")
deployment_id = "14b2a314cc"
# 确保模型信息存在
if model not in model_map or len(model_map[model]) < 2:
print(f"错误: 无法获取模型 {model} 的信息")
return None, False
external_app_id = model_map[model][0]
# 创建新会话
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id}")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
return new_conversation_id, False
print("创建新会话失败")
return None, False
def generate_trace_id():
"""Generu novan trace_id kaj sentry_trace"""
trace_id = str(uuid.uuid4()).replace('-', '')
sentry_trace = f"{trace_id}-{str(uuid.uuid4())[:16]}"
return trace_id, sentry_trace
def send_message(message, model, think=False):
"""Flua traktado kaj plusendo de mesaĝoj"""
print("\n===== 开始处理消息 =====")
print(f"模型: {model}")
print(f"思考模式: {think}")
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
print(f"使用用户配置: {user_index + 1}")
# 获取会话ID,并判断是否使用现有会话
conversation_id, is_existing = get_or_create_conversation(
session, cookies, session_token, conversation_id, model_map, model, user_index
)
# 如果没有有效的会话ID,返回错误
if not conversation_id:
return jsonify({"error": "Failed to get a valid conversation ID"}), 500
print(f"会话ID: {conversation_id} (是否为现有会话: {is_existing})")
trace_id, sentry_trace = generate_trace_id()
# 计算输入token
completion_buffer = io.StringIO() # 收集所有输出用于计算token
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
# 构建基础请求
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0]
}
# 如果是使用现有会话,添加regenerate和editPrompt参数
if is_existing:
payload["regenerate"] = True
payload["editPrompt"] = True
print("为现有会话添加 regenerate=True 和 editPrompt=True")
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
def generate():
id = ""
think_state = 2
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {"role": "assistant"}}]}) + "\n\n"
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
if think:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = "\n" + data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = "\n\n" + data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 0
else:
segment = data.get("segment", "")
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = extract_segment(decoded_line)
if segment:
completion_buffer.write(segment)
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
except Exception as e:
print(f"处理响应出错: {e}")
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (流式结束后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
completion_content = completion_buffer.getvalue()
completion_tokens, comp_calc_method = num_tokens_from_string(completion_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法 (优先使用精确)
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {}, "finish_reason": "stop"}]}) + "\n\n"
yield "data: [DONE]\n\n"
# 在流式传输完成后计算token并更新统计
# 注意: 如果客户端在流结束前断开连接,这里的 completion_content 可能不完整,
# 导致 completion_tokens 和 total_tokens 的本地记录不准确。
# 但 Abacus 的计算点数扣除通常在其服务端完成,不受此影响。
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return Response(generate(), mimetype="text/event-stream")
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
# 如果是使用现有会话失败,尝试创建新会话重试一次
if is_existing:
print("使用现有会话失败,尝试创建新会话...")
# 创建新会话
deployment_id = "14b2a314cc"
external_app_id = model_map[model][0] if model in model_map and len(model_map[model]) >= 2 else None
if external_app_id:
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id},重试请求")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
# 修改payload使用新会话ID,并移除regenerate和editPrompt
payload["deploymentConversationId"] = new_conversation_id
if "regenerate" in payload:
del payload["regenerate"]
if "editPrompt" in payload:
del payload["editPrompt"]
try:
# 非流式重试逻辑与流式类似,但需要重新提取响应内容
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
# 重用现有提取逻辑...
# 但这里代码重复太多,实际应该重构为共享函数
buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- 重试逻辑中的 Token 计算 ----
print("\n----- 计算 Tokens (重试成功后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, new_conversation_id)
# 更新统计信息
# 注意: 重试逻辑。Token 计算准确性依赖于 response 完整性。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except Exception as retry_e:
print(f"重试失败: {retry_e}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def send_message_non_stream(message, model, think=False):
"""Ne-flua traktado de mesaĝoj"""
print("\n===== 开始处理消息(非流式) =====")
print(f"模型: {model}")
print(f"思考模式: {think}")
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
print(f"使用用户配置: {user_index + 1}")
# 获取会话ID,并判断是否使用现有会话
conversation_id, is_existing = get_or_create_conversation(
session, cookies, session_token, conversation_id, model_map, model, user_index
)
# 如果没有有效的会话ID,返回错误
if not conversation_id:
return jsonify({"error": "Failed to get a valid conversation ID"}), 500
print(f"会话ID: {conversation_id} (是否为现有会话: {is_existing})")
trace_id, sentry_trace = generate_trace_id()
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS),
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
# 构建基础请求
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0]
}
# 如果是使用现有会话,添加regenerate和editPrompt参数
if is_existing:
payload["regenerate"] = True
payload["editPrompt"] = True
print("为现有会话添加 regenerate=True 和 editPrompt=True")
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
buffer = io.StringIO()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
if think:
id = ""
think_state = 2
think_buffer = io.StringIO()
content_buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
content_buffer.write(segment)
else:
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 0
else:
segment = data.get("segment", "")
content_buffer.write(segment)
except Exception as e:
print(f"处理响应出错: {e}")
think_content = think_buffer.getvalue()
response_content = content_buffer.getvalue()
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (非流式, think模式) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(think_content + response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
# 注意: 如果客户端在请求完成前断开连接(理论上非流式不太可能,但网络异常可能发生),
# Token 计算的准确性取决于 response 是否完整接收。Abacus 点数扣除不受影响。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": f"\n{think_content}\n\n{response_content}"
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
else:
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- Token 计算移到这里 ----
print("\n----- 计算 Tokens (非流式) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, conversation_id)
# 更新统计信息
# 注意: 如果客户端在请求完成前断开连接(理论上非流式不太可能,但网络异常可能发生),
# Token 计算的准确性取决于 response 是否完整接收。Abacus 点数扣除不受影响。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
# 如果是使用现有会话失败,尝试创建新会话重试一次
if is_existing:
print("使用现有会话失败,尝试创建新会话...")
# 创建新会话
deployment_id = "14b2a314cc"
external_app_id = model_map[model][0] if model in model_map and len(model_map[model]) >= 2 else None
if external_app_id:
new_conversation_id = create_conversation(
session, cookies, session_token,
external_application_id=external_app_id,
deployment_id=deployment_id
)
if new_conversation_id:
print(f"成功创建新会话ID: {new_conversation_id},重试请求")
# 更新全局存储的会话ID
global USER_DATA, CURRENT_USER
session, cookies, session_token, _, model_map, _ = USER_DATA[CURRENT_USER]
USER_DATA[CURRENT_USER] = (session, cookies, session_token, new_conversation_id, model_map, user_index)
# 保存到配置文件
update_conversation_id(user_index, new_conversation_id)
# 修改payload使用新会话ID,并移除regenerate和editPrompt
payload["deploymentConversationId"] = new_conversation_id
if "regenerate" in payload:
del payload["regenerate"]
if "editPrompt" in payload:
del payload["editPrompt"]
try:
# 非流式重试逻辑与流式类似,但需要重新提取响应内容
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True,
cookies=None
)
response.raise_for_status()
# 重用现有提取逻辑...
# 但这里代码重复太多,实际应该重构为共享函数
buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# ---- 重试逻辑中的 Token 计算 ----
print("\n----- 计算 Tokens (重试成功后) -----")
prompt_tokens, calculation_method = num_tokens_from_string(message, model)
print(f"输入 token 数: {prompt_tokens} (方法: {calculation_method})")
# 计算输出token并更新统计信息
completion_tokens, comp_calc_method = num_tokens_from_string(response_content, model)
print(f"输出 token 数: {completion_tokens} (方法: {comp_calc_method})")
# 决定最终使用的计算方法
final_calculation_method = "精确" if calculation_method == "精确" and comp_calc_method == "精确" else "估算"
# ---- Token 计算结束 ----
# 保存对话历史并获取计算点数
_, compute_points_used = save_conversation_history(session, cookies, session_token, new_conversation_id)
# 更新统计信息
# 注意: 重试逻辑。Token 计算准确性依赖于 response 完整性。
update_model_stats(model, prompt_tokens, completion_tokens, final_calculation_method, compute_points_used)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except Exception as retry_e:
print(f"重试失败: {retry_e}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def format_message(messages):
buffer = io.StringIO()
role_map, prefix, messages = extract_role(messages)
for message in messages:
role = message.get("role")
role = "\b" + role_map[role] if prefix else role_map[role]
content = message.get("content").replace("\\n", "\n")
pattern = re.compile(r"<\|removeRole\|>\n")
if pattern.match(content):
content = pattern.sub("", content)
buffer.write(f"{content}\n")
else:
buffer.write(f"{role}: {content}\n\n")
formatted_message = buffer.getvalue()
return formatted_message
def extract_role(messages):
role_map = {"user": "Human", "assistant": "Assistant", "system": "System"}
prefix = True # 默认添加前缀
first_message = messages[0]["content"]
pattern = re.compile(
r"""
\s*
(?:user:\s*(?P[^\n]*)\s*)? # Make user optional
(?:assistant:\s*(?P[^\n]*)\s*)? # Make assistant optional
(?:system:\s*(?P[^\n]*)\s*)? # Make system optional
(?:prefix:\s*(?P[^\n]*)\s*)? # Make prefix optional
\n
""",
re.VERBOSE,
)
match = pattern.search(first_message)
if match:
# 更新 role_map 如果提供了值
user_role = match.group("user")
assistant_role = match.group("assistant")
system_role = match.group("system")
if user_role: role_map["user"] = user_role
if assistant_role: role_map["assistant"] = assistant_role
if system_role: role_map["system"] = system_role
# 检查 prefix 值:仅当显式设置为非 "1" 时才将 prefix 设为 False
prefix_value = match.group("prefix")
if prefix_value is not None and prefix_value != "1":
prefix = False
# 如果 prefix_value 是 None (标签不存在) 或 "1", prefix 保持 True
messages[0]["content"] = pattern.sub("", first_message)
print(f"Extracted role map:")
print(
f"User: {role_map['user']}, Assistant: {role_map['assistant']}, System: {role_map['system']}"
)
print(f"Using prefix: {prefix}") # 打印语句保持不变,反映最终结果
# 如果没有匹配到 ,prefix 保持默认值 True
return (role_map, prefix, messages)
@app.route("/health", methods=["GET"])
def health_check():
global health_check_counter
health_check_counter += 1
return jsonify({
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"checks": health_check_counter
})
def keep_alive():
"""每20分钟进行一次自我健康检查"""
while True:
try:
requests.get("http://127.0.0.1:7860/health")
time.sleep(1200) # 20分钟
except:
pass # 忽略错误,保持运行
@app.route("/", methods=["GET"])
def index():
# 如果需要密码且用户未登录,重定向到登录页面
if PASSWORD and not flask_session.get('logged_in'):
return redirect(url_for('login'))
# 否则重定向到仪表盘
return redirect(url_for('dashboard'))
def num_tokens_from_string(string, model=""):
try:
print("\n===================== 开始计算token =====================")
print(f"模型: {model}")
print(f"输入内容长度: {len(string)} 字符")
request_data = {
"model": model,
"messages": [{"role": "user", "content": string}]
}
print(f"发送请求到tokenizer服务: {TOKENIZER_SERVICE_URL}")
print(f"请求数据: {json.dumps(request_data, ensure_ascii=False)}")
response = requests.post(
TOKENIZER_SERVICE_URL,
json=request_data,
timeout=10
)
print(f"\nTokenizer响应状态码: {response.status_code}")
print(f"Tokenizer响应内容: {response.text}")
if response.status_code == 200:
result = response.json()
input_tokens = result.get("input_tokens", 0)
print(f"\n成功获取token数: {input_tokens}")
print(f"使用计算方法: 精确")
print("===================== 计算完成 =====================\n")
return input_tokens, "精确"
else:
estimated_tokens = len(string) // 4
print(f"\nTokenizer服务错误: {response.status_code}")
print(f"错误响应: {response.text}")
print(f"使用估算token数: {estimated_tokens}")
print(f"使用计算方法: 估算")
print("===================== 计算完成 =====================\n")
return estimated_tokens, "估算"
except Exception as e:
estimated_tokens = len(string) // 4
print(f"\n计算token时发生错误: {str(e)}")
print(f"使用估算token数: {estimated_tokens}")
print(f"使用计算方法: 估算")
print("===================== 计算完成 =====================\n")
return estimated_tokens, "估算"
# 更新模型使用统计
def update_model_stats(model, prompt_tokens, completion_tokens, calculation_method="estimate", compute_points=None):
global model_usage_stats, total_tokens, model_usage_records
# 添加调用记录
# 获取UTC时间
utc_now = datetime.utcnow()
# 转换为北京时间 (UTC+8)
beijing_time = utc_now + timedelta(hours=8)
call_time = beijing_time.strftime('%Y-%m-%d %H:%M:%S') # 北京时间
record = {
"model": model,
"call_time": call_time,
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"calculation_method": calculation_method, # 直接使用传入的值
"compute_points": compute_points
}
model_usage_records.append(record)
# 限制记录数量,保留最新的500条
if len(model_usage_records) > 500:
model_usage_records.pop(0)
# 保存调用记录到本地文件
save_model_usage_records()
# 更新聚合统计
if model not in model_usage_stats:
model_usage_stats[model] = {
"count": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
model_usage_stats[model]["count"] += 1
model_usage_stats[model]["prompt_tokens"] += prompt_tokens
model_usage_stats[model]["completion_tokens"] += completion_tokens
model_usage_stats[model]["total_tokens"] += (prompt_tokens + completion_tokens)
total_tokens["prompt"] += prompt_tokens
total_tokens["completion"] += completion_tokens
total_tokens["total"] += (prompt_tokens + completion_tokens)
# 获取计算点信息
def get_compute_points():
global compute_points, USER_DATA, users_compute_points
if USER_NUM == 0:
return
# 清空用户计算点列表
users_compute_points = []
# 累计总计算点
total_left = 0
total_points = 0
# 获取每个用户的计算点信息
for i, user_data in enumerate(USER_DATA):
try:
session, cookies, session_token, _, _, _ = user_data
# 检查token是否有效
if is_token_expired(session_token):
session_token = refresh_token(session, cookies)
if not session_token:
print(f"用户{i+1}刷新token失败,无法获取计算点信息")
continue
USER_DATA[i] = (session, cookies, session_token, user_data[3], user_data[4], i)
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=93da8385541a6ce339b1f41b0c94428c70657e22,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={TRACE_ID}",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": SENTRY_TRACE,
"session-token": session_token,
"x-abacus-org-host": "apps",
"cookie": cookies
}
response = session.get(
COMPUTE_POINTS_URL,
headers=headers
)
if response.status_code == 200:
result = response.json()
if result.get("success") and "result" in result:
data = result["result"]
left = data.get("computePointsLeft", 0)
total = data.get("totalComputePoints", 0)
used = total - left
percentage = round((used / total) * 100, 2) if total > 0 else 0
# 获取北京时间
beijing_now = datetime.utcnow() + timedelta(hours=8)
# 添加到用户列表
user_points = {
"user_id": i + 1, # 用户ID从1开始
"left": left,
"total": total,
"used": used,
"percentage": percentage,
"last_update": beijing_now
}
users_compute_points.append(user_points)
# 累计总数
total_left += left
total_points += total
print(f"用户{i+1}计算点信息更新成功: 剩余 {left}, 总计 {total}")
# 对于第一个用户,获取计算点使用日志
if i == 0:
get_compute_points_log(session, cookies, session_token)
else:
print(f"获取用户{i+1}计算点信息失败: {result.get('error', '未知错误')}")
else:
print(f"获取用户{i+1}计算点信息失败,状态码: {response.status_code}")
except Exception as e:
print(f"获取用户{i+1}计算点信息异常: {e}")
# 更新全局计算点信息(所有用户总和)
if users_compute_points:
compute_points["left"] = total_left
compute_points["total"] = total_points
compute_points["used"] = total_points - total_left
compute_points["percentage"] = round((compute_points["used"] / compute_points["total"]) * 100, 2) if compute_points["total"] > 0 else 0
compute_points["last_update"] = datetime.utcnow() + timedelta(hours=8) # 北京时间
print(f"所有用户计算点总计: 剩余 {total_left}, 总计 {total_points}")
# 获取计算点使用日志
def get_compute_points_log(session, cookies, session_token):
global compute_points_log
try:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"session-token": session_token,
"x-abacus-org-host": "apps",
"cookie": cookies
}
response = session.post(
COMPUTE_POINTS_LOG_URL,
headers=headers,
json={"byLlm": True}
)
if response.status_code == 200:
result = response.json()
if result.get("success") and "result" in result:
data = result["result"]
compute_points_log["columns"] = data.get("columns", {})
compute_points_log["log"] = data.get("log", [])
print(f"计算点使用日志更新成功,获取到 {len(compute_points_log['log'])} 条记录")
else:
print(f"获取计算点使用日志失败: {result.get('error', '未知错误')}")
else:
print(f"获取计算点使用日志失败,状态码: {response.status_code}")
except Exception as e:
print(f"获取计算点使用日志异常: {e}")
# 添加登录相关路由
@app.route("/login", methods=["GET", "POST"])
def login():
error = None
if request.method == "POST":
password = request.form.get("password")
if password and hashlib.sha256(password.encode()).hexdigest() == PASSWORD:
flask_session['logged_in'] = True
flask_session.permanent = True
return redirect(url_for('dashboard'))
else:
# 密码错误时提示使用环境变量密码
error = "密码不正确。请使用设置的环境变量 password 或 password.txt 中的值作为密码和API认证密钥。"
# 传递空间URL给模板
return render_template('login.html', error=error, space_url=SPACE_URL)
@app.route("/logout")
def logout():
flask_session.clear()
return redirect(url_for('login'))
@app.route("/dashboard")
@require_auth
def dashboard():
# 在每次访问仪表盘时更新计算点信息
get_compute_points()
# 计算运行时间(使用北京时间)
beijing_now = datetime.utcnow() + timedelta(hours=8)
uptime = beijing_now - START_TIME
days = uptime.days
hours, remainder = divmod(uptime.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if days > 0:
uptime_str = f"{days}天 {hours}小时 {minutes}分钟"
elif hours > 0:
uptime_str = f"{hours}小时 {minutes}分钟"
else:
uptime_str = f"{minutes}分钟 {seconds}秒"
# 当前北京年份
beijing_year = beijing_now.year
return render_template(
'dashboard.html',
uptime=uptime_str,
health_checks=health_check_counter,
user_count=USER_NUM,
models=sorted(list(MODELS)),
year=beijing_year,
model_stats=model_usage_stats,
total_tokens=total_tokens,
compute_points=compute_points,
compute_points_log=compute_points_log,
space_url=SPACE_URL, # 传递空间URL
users_compute_points=users_compute_points, # 传递用户计算点信息
model_usage_records=model_usage_records, # 传递模型使用记录
)
# 添加更新计算点数记录设置的路由
@app.route("/update_compute_point_toggle", methods=["POST"])
@require_auth
def update_compute_point_toggle():
try:
(session, cookies, session_token, conversation_id, model_map, user_index) = get_user_data()
data = request.get_json()
if data and "always_display" in data:
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
response = session.post(
COMPUTE_POINT_TOGGLE_URL,
headers=headers,
json={"alwaysDisplay": data["always_display"]},
cookies=None
)
if response.status_code == 200:
result = response.json()
if result.get("success"):
print(f"更新计算点数记录设置为: {data['always_display']}")
return jsonify({"success": True})
return jsonify({"success": False, "error": "API调用失败"})
else:
return jsonify({"success": False, "error": "缺少always_display参数"})
except Exception as e:
print(f"更新计算点数记录设置失败: {e}")
return jsonify({"success": False, "error": str(e)})
# 获取Hugging Face Space URL
def get_space_url():
# 尝试从环境变量获取
space_url = os.environ.get("SPACE_URL")
if space_url:
return space_url
# 如果SPACE_URL不存在,尝试从SPACE_ID构建
space_id = os.environ.get("SPACE_ID")
if space_id:
username, space_name = space_id.split("/")
# 将空间名称中的下划线替换为连字符
# 注意:Hugging Face生成的URL会自动将空间名称中的下划线(_)替换为连字符(-)
# 例如:"abacus_chat_proxy" 会变成 "abacus-chat-proxy"
space_name = space_name.replace("_", "-")
return f"https://{username}-{space_name}.hf.space"
# 如果以上都不存在,尝试从单独的用户名和空间名构建
username = os.environ.get("SPACE_USERNAME")
space_name = os.environ.get("SPACE_NAME")
if username and space_name:
# 将空间名称中的下划线替换为连字符
# 同上,Hugging Face会自动进行此转换
space_name = space_name.replace("_", "-")
return f"https://{username}-{space_name}.hf.space"
# 默认返回None
return None
# 获取空间URL
SPACE_URL = get_space_url()
if SPACE_URL:
print(f"Space URL: {SPACE_URL}")
print("注意:Hugging Face生成的URL会自动将空间名称中的下划线(_)替换为连字符(-)")
def save_conversation_history(session, cookies, session_token, conversation_id, deployment_id="14b2a314cc"):
"""保存对话历史,返回使用的计算点数"""
if not conversation_id:
return False, None
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=946244517de08b08598b94f18098411f5a5352d5,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={TRACE_ID}",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": f"{TRACE_ID}-800cb7f4613dec52",
"x-abacus-org-host": "apps"
}
if session_token:
headers["session-token"] = session_token
params = {
"deploymentId": deployment_id,
"deploymentConversationId": conversation_id,
"skipDocumentBoundingBoxes": "true",
"filterIntermediateConversationEvents": "false",
"getUnusedDocumentUploads": "false"
}
try:
response = session.get(
GET_CONVERSATION_URL,
headers=headers,
params=params,
cookies=None
)
if response.status_code == 200:
data = response.json()
if data.get("success"):
# 从最后一条BOT消息中获取计算点数
history = data.get("result", {}).get("history", [])
compute_points = None
for msg in reversed(history):
if msg.get("role") == "BOT":
compute_points = msg.get("computePointsUsed")
break
print(f"成功保存对话历史: {conversation_id}, 使用计算点: {compute_points}")
return True, compute_points
else:
print(f"保存对话历史失败: {data.get('error', '未知错误')}")
else:
print(f"保存对话历史失败,状态码: {response.status_code}")
return False, None
except Exception as e:
print(f"保存对话历史时出错: {e}")
return False, None
if __name__ == "__main__":
# 启动保活线程
threading.Thread(target=keep_alive, daemon=True).start()
# 加载历史模型调用记录
load_model_usage_records()
# 获取初始计算点信息
get_compute_points()
port = int(os.environ.get("PORT", 9876))
app.run(port=port, host="0.0.0.0")