Spaces:
Running
Running
from flask import Flask, request, jsonify | |
import tiktoken | |
import os | |
app = Flask(__name__) | |
# OpenAI模型映射 | |
MODEL_MAPPINGS = { | |
# GPT-4系列 | |
"gpt-4o": "o200k_base", | |
"gpt-4-turbo": "cl100k_base", | |
"gpt-4": "cl100k_base", | |
# GPT-3.5系列 | |
"gpt-3.5-turbo": "cl100k_base", | |
"gpt-35-turbo": "cl100k_base", | |
# 旧模型 | |
"text-davinci-003": "p50k_base", | |
"text-davinci-002": "p50k_base", | |
"davinci": "r50k_base", | |
# 嵌入模型 | |
"text-embedding-ada-002": "cl100k_base", | |
} | |
def count_tokens(): | |
try: | |
data = request.json | |
messages = data.get('messages', []) | |
system = data.get('system') | |
model = data.get('model', 'gpt-3.5-turbo') | |
# 根据模型名称选择合适的编码器 | |
model_key = model.lower() | |
encoding_name = None | |
# 查找完全匹配 | |
if model_key in MODEL_MAPPINGS: | |
encoding_name = MODEL_MAPPINGS[model_key] | |
else: | |
# 查找部分匹配 | |
for key in MODEL_MAPPINGS: | |
if key in model_key: | |
encoding_name = MODEL_MAPPINGS[key] | |
break | |
# 如果没有找到匹配,使用默认的cl100k_base编码器 | |
if not encoding_name: | |
encoding_name = "cl100k_base" # 最常用的编码器 | |
# 获取编码器 | |
try: | |
encoding = tiktoken.get_encoding(encoding_name) | |
except KeyError: | |
# 如果找不到编码器,使用gpt-3.5-turbo的编码器 | |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
# 计算tokens | |
total_tokens = 0 | |
# 按照OpenAI的格式计算tokens | |
# 参考: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |
# 对于ChatGPT模型,每个请求都有3个隐藏tokens | |
if encoding_name in ["cl100k_base", "o200k_base"]: | |
# 每条消息开头有3个token,结尾有1个token | |
total_tokens += 3 # 每个请求的起始tokens | |
# 计算每条消息的tokens | |
for message in messages: | |
total_tokens += 4 # 每条消息增加4个token (包括角色) | |
for key, value in message.items(): | |
total_tokens += len(encoding.encode(value)) | |
# 名称字段比较少见,但也计入 | |
if key == "name": | |
total_tokens -= 1 # 角色名称单独token计算减免 | |
# 计算system消息的token | |
if system: | |
total_tokens += 4 # system消息也视为一条消息 | |
total_tokens += len(encoding.encode(system)) | |
else: | |
# 对于旧模型,只计算文本的token数量 | |
all_text = "" | |
if system: | |
all_text += system + "\n\n" | |
for message in messages: | |
role = message.get('role', '') | |
content = message.get('content', '') | |
all_text += f"{role}: {content}\n" | |
total_tokens = len(encoding.encode(all_text)) | |
return jsonify({ | |
'input_tokens': total_tokens, | |
'model': model, | |
'encoding': encoding_name | |
}) | |
except Exception as e: | |
return jsonify({ | |
'error': str(e) | |
}), 400 | |
def health(): | |
return jsonify({ | |
'status': 'healthy', | |
'tokenizer': 'openai-tiktoken', | |
'supported_models': list(MODEL_MAPPINGS.keys()) | |
}) | |
if __name__ == '__main__': | |
app.run(host='127.0.0.1', port=7862) |