Spaces:
Sleeping
Sleeping
File size: 35,214 Bytes
49a2030 2b28cab 49a2030 573cb3b 2b28cab 49a2030 2b28cab f3fc6fe 2b28cab 573cb3b acd873c f3fc6fe 573cb3b 2b28cab 49a2030 2b28cab 49a2030 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 573cb3b 2b28cab 49a2030 f3fc6fe 49a2030 2b28cab 573cb3b 709885d 573cb3b 709885d 573cb3b 709885d 573cb3b f3fc6fe acd873c f3fc6fe acd873c f3fc6fe acd873c f3fc6fe acd873c f3fc6fe acd873c f3fc6fe 7831ad4 49a2030 172460b 49a2030 bd231bb 49a2030 172460b 2b28cab f3fc6fe 2b28cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
from flask import Flask, request, jsonify, Response, render_template_string, render_template, redirect, url_for, session as flask_session
import requests
import time
import json
import uuid
import random
import io
import re
from functools import wraps
import hashlib
import jwt
import os
import threading
from datetime import datetime, timedelta
import tiktoken # 导入tiktoken来计算token数量
app = Flask(__name__, template_folder='templates')
app.secret_key = os.environ.get("SECRET_KEY", "abacus_chat_proxy_secret_key")
app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(days=7)
API_ENDPOINT_URL = "https://abacus.ai/api/v0/describeDeployment"
MODEL_LIST_URL = "https://abacus.ai/api/v0/listExternalApplications"
CHAT_URL = "https://apps.abacus.ai/api/_chatLLMSendMessageSSE"
USER_INFO_URL = "https://abacus.ai/api/v0/_getUserInfo"
COMPUTE_POINTS_URL = "https://apps.abacus.ai/api/_getOrganizationComputePoints"
COMPUTE_POINTS_LOG_URL = "https://abacus.ai/api/v0/_getOrganizationComputePointLog"
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
]
PASSWORD = None
USER_NUM = 0
USER_DATA = []
CURRENT_USER = -1
MODELS = set()
TRACE_ID = "3042e28b3abf475d8d973c7e904935af"
SENTRY_TRACE = f"{TRACE_ID}-80d9d2538b2682d0"
# 添加一个计数器记录健康检查次数
health_check_counter = 0
# 添加统计变量
model_usage_stats = {} # 模型使用次数统计
total_tokens = {
"prompt": 0, # 输入token统计
"completion": 0, # 输出token统计
"total": 0 # 总token统计
}
# 计算点信息 (现在是列表)
compute_points = []
# {
# "left": 0, # 剩余计算点
# "total": 0, # 总计算点
# "used": 0, # 已使用计算点
# "percentage": 0, # 使用百分比
# "last_update": None # 最后更新时间
# }
# 计算点使用日志 (现在是列表)
compute_points_log = []
# {
# "columns": {}, # 列名
# "log": [] # 日志数据
# }
# 记录启动时间
START_TIME = datetime.now()
def resolve_config():
# 从环境变量读取多组配置
config_list = []
i = 1
while True:
covid = os.environ.get(f"covid_{i}")
cookie = os.environ.get(f"cookie_{i}")
if not (covid and cookie):
break
config_list.append({
"conversation_id": covid,
"cookies": cookie
})
i += 1
# 如果环境变量存在配置,使用环境变量的配置
if config_list:
return config_list
# 如果环境变量不存在,从文件读取
try:
with open("config.json", "r") as f:
config = json.load(f)
config_list = config.get("config")
return config_list
except FileNotFoundError:
print("未找到config.json文件")
return []
except json.JSONDecodeError:
print("config.json格式错误")
return []
def get_password():
global PASSWORD
# 从环境变量读取密码
env_password = os.environ.get("password")
if env_password:
PASSWORD = hashlib.sha256(env_password.encode()).hexdigest()
return
# 如果环境变量不存在,从文件读取
try:
with open("password.txt", "r") as f:
PASSWORD = f.read().strip()
except FileNotFoundError:
with open("password.txt", "w") as f:
PASSWORD = None
def require_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if not PASSWORD:
return f(*args, **kwargs)
# 检查Flask会话是否已登录
if flask_session.get('logged_in'):
return f(*args, **kwargs)
# 如果是API请求,检查Authorization头
auth = request.authorization
if not auth or not check_auth(auth.token):
# 如果是浏览器请求,重定向到登录页面
if request.headers.get('Accept', '').find('text/html') >= 0:
return redirect(url_for('login'))
return jsonify({"error": "Unauthorized access"}), 401
return f(*args, **kwargs)
return decorated
def check_auth(token):
return hashlib.sha256(token.encode()).hexdigest() == PASSWORD
def is_token_expired(token):
if not token:
return True
try:
# Malkodi tokenon sen validigo de subskribo
payload = jwt.decode(token, options={"verify_signature": False})
# Akiru eksvalidiĝan tempon, konsideru eksvalidiĝinta 5 minutojn antaŭe
return payload.get('exp', 0) - time.time() < 300
except:
return True
def refresh_token(session, cookies):
"""Uzu kuketon por refreŝigi session token, nur revenigu novan tokenon"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
try:
response = session.post(
USER_INFO_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code == 200:
response_data = response.json()
if response_data.get('success') and 'sessionToken' in response_data.get('result', {}):
return response_data['result']['sessionToken']
else:
print(f"刷新token失败: {response_data.get('error', '未知错误')}")
return None
else:
print(f"刷新token失败,状态码: {response.status_code}")
return None
except Exception as e:
print(f"刷新token异常: {e}")
return None
def get_model_map(session, cookies, session_token):
"""Akiru disponeblan modelan liston kaj ĝiajn mapajn rilatojn"""
headers = {
"accept": "application/json, text/plain, */*",
"accept-language": "zh-CN,zh;q=0.9",
"content-type": "application/json",
"reai-ui": "1",
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"x-abacus-org-host": "apps",
"user-agent": random.choice(USER_AGENTS),
"origin": "https://apps.abacus.ai",
"referer": "https://apps.abacus.ai/",
"cookie": cookies
}
if session_token:
headers["session-token"] = session_token
model_map = {}
models_set = set()
try:
response = session.post(
MODEL_LIST_URL,
headers=headers,
json={},
cookies=None
)
if response.status_code != 200:
print(f"获取模型列表失败,状态码: {response.status_code}")
raise Exception("API请求失败")
data = response.json()
if not data.get('success'):
print(f"获取模型列表失败: {data.get('error', '未知错误')}")
raise Exception("API返回错误")
applications = []
if isinstance(data.get('result'), dict):
applications = data.get('result', {}).get('externalApplications', [])
elif isinstance(data.get('result'), list):
applications = data.get('result', [])
for app in applications:
app_name = app.get('name', '')
app_id = app.get('externalApplicationId', '')
prediction_overrides = app.get('predictionOverrides', {})
llm_name = prediction_overrides.get('llmName', '') if prediction_overrides else ''
if not (app_name and app_id and llm_name):
continue
model_name = app_name
model_map[model_name] = (app_id, llm_name)
models_set.add(model_name)
if not model_map:
raise Exception("未找到任何可用模型")
return model_map, models_set
except Exception as e:
print(f"获取模型列表异常: {e}")
raise
def init_session():
get_password()
global USER_NUM, MODELS, USER_DATA
config_list = resolve_config()
user_num = len(config_list)
all_models = set()
for i in range(user_num):
user = config_list[i]
cookies = user.get("cookies")
conversation_id = user.get("conversation_id")
session = requests.Session()
session_token = refresh_token(session, cookies)
if not session_token:
print(f"无法获取cookie {i+1}的token")
continue
try:
model_map, models_set = get_model_map(session, cookies, session_token)
all_models.update(models_set)
USER_DATA.append((session, cookies, session_token, conversation_id, model_map))
except Exception as e:
print(f"配置用户 {i+1} 失败: {e}")
continue
USER_NUM = len(USER_DATA)
if USER_NUM == 0:
print("No user available, exiting...")
exit(1)
MODELS = all_models
print(f"启动完成,共配置 {USER_NUM} 个用户")
def update_cookie(session, cookies):
cookie_jar = {}
for key, value in session.cookies.items():
cookie_jar[key] = value
cookie_dict = {}
for item in cookies.split(";"):
key, value = item.strip().split("=", 1)
cookie_dict[key] = value
cookie_dict.update(cookie_jar)
cookies = "; ".join([f"{key}={value}" for key, value in cookie_dict.items()])
return cookies
user_data = init_session()
@app.route("/v1/models", methods=["GET"])
@require_auth
def get_models():
if len(MODELS) == 0:
return jsonify({"error": "No models available"}), 500
model_list = []
for model in MODELS:
model_list.append(
{
"id": model,
"object": "model",
"created": int(time.time()),
"owned_by": "Elbert",
"name": model,
}
)
return jsonify({"object": "list", "data": model_list})
@app.route("/v1/chat/completions", methods=["POST"])
@require_auth
def chat_completions():
openai_request = request.get_json()
stream = openai_request.get("stream", False)
messages = openai_request.get("messages")
if messages is None:
return jsonify({"error": "Messages is required", "status": 400}), 400
model = openai_request.get("model")
if model not in MODELS:
return (
jsonify(
{
"error": "Model not available, check if it is configured properly",
"status": 404,
}
),
404,
)
message = format_message(messages)
think = (
openai_request.get("think", False) if model == "Claude Sonnet 3.7" else False
)
return (
send_message(message, model, think)
if stream
else send_message_non_stream(message, model, think)
)
def get_user_data():
global CURRENT_USER
CURRENT_USER = (CURRENT_USER + 1) % USER_NUM
print(f"使用配置 {CURRENT_USER+1}")
# Akiru uzantajn datumojn
session, cookies, session_token, conversation_id, model_map = USER_DATA[CURRENT_USER]
# Kontrolu ĉu la tokeno eksvalidiĝis, se jes, refreŝigu ĝin
if is_token_expired(session_token):
print(f"Cookie {CURRENT_USER+1}的token已过期或即将过期,正在刷新...")
new_token = refresh_token(session, cookies)
if new_token:
# Ĝisdatigu la globale konservitan tokenon
USER_DATA[CURRENT_USER] = (session, cookies, new_token, conversation_id, model_map)
session_token = new_token
print(f"成功更新token: {session_token[:15]}...{session_token[-15:]}")
else:
print(f"警告:无法刷新Cookie {CURRENT_USER+1}的token,继续使用当前token")
return (session, cookies, session_token, conversation_id, model_map)
def generate_trace_id():
"""Generu novan trace_id kaj sentry_trace"""
trace_id = str(uuid.uuid4()).replace('-', '')
sentry_trace = f"{trace_id}-{str(uuid.uuid4())[:16]}"
return trace_id, sentry_trace
def send_message(message, model, think=False):
"""Flua traktado kaj plusendo de mesaĝoj"""
(session, cookies, session_token, conversation_id, model_map) = get_user_data()
trace_id, sentry_trace = generate_trace_id()
# 计算输入token
prompt_tokens = num_tokens_from_string(message)
completion_buffer = io.StringIO() # 收集所有输出用于计算token
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS)
}
if session_token:
headers["session-token"] = session_token
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0],
"regenerate": True,
"editPrompt": True
}
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True
)
response.raise_for_status()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
def generate():
id = ""
think_state = 2
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {"role": "assistant"}}]}) + "\n\n"
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
if think:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = "<think>\n" + data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = "\n</think>\n" + data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
think_state = 0
else:
segment = data.get("segment", "")
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
else:
segment = extract_segment(decoded_line)
if segment:
completion_buffer.write(segment) # 收集输出
yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
except Exception as e:
print(f"处理响应出错: {e}")
yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {}, "finish_reason": "stop"}]}) + "\n\n"
yield "data: [DONE]\n\n"
# 在流式传输完成后计算token并更新统计
completion_tokens = num_tokens_from_string(completion_buffer.getvalue())
update_model_stats(model, prompt_tokens, completion_tokens)
return Response(generate(), mimetype="text/event-stream")
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def send_message_non_stream(message, model, think=False):
"""Ne-flua traktado de mesaĝoj"""
(session, cookies, session_token, conversation_id, model_map) = get_user_data()
trace_id, sentry_trace = generate_trace_id()
# 计算输入token
prompt_tokens = num_tokens_from_string(message)
headers = {
"accept": "text/event-stream",
"accept-language": "zh-CN,zh;q=0.9",
"baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
"content-type": "text/plain;charset=UTF-8",
"cookie": cookies,
"sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sentry-trace": sentry_trace,
"user-agent": random.choice(USER_AGENTS)
}
if session_token:
headers["session-token"] = session_token
payload = {
"requestId": str(uuid.uuid4()),
"deploymentConversationId": conversation_id,
"message": message,
"isDesktop": False,
"chatConfig": {
"timezone": "Asia/Shanghai",
"language": "zh-CN"
},
"llmName": model_map[model][1],
"externalApplicationId": model_map[model][0],
"regenerate": True,
"editPrompt": True
}
if think:
payload["useThinking"] = think
try:
response = session.post(
CHAT_URL,
headers=headers,
data=json.dumps(payload),
stream=True
)
response.raise_for_status()
buffer = io.StringIO()
def extract_segment(line_data):
try:
data = json.loads(line_data)
if "segment" in data:
if isinstance(data["segment"], str):
return data["segment"]
elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
return data["segment"]["segment"]
return ""
except:
return ""
if think:
id = ""
think_state = 2
think_buffer = io.StringIO()
content_buffer = io.StringIO()
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
try:
data = json.loads(decoded_line)
if data.get("type") != "text":
continue
elif think_state == 2:
id = data.get("messageId")
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 1
elif think_state == 1:
if data.get("messageId") != id:
segment = data.get("segment", "")
content_buffer.write(segment)
else:
segment = data.get("segment", "")
think_buffer.write(segment)
think_state = 0
else:
segment = data.get("segment", "")
content_buffer.write(segment)
except Exception as e:
print(f"处理响应出错: {e}")
think_content = think_buffer.getvalue()
response_content = content_buffer.getvalue()
# 计算输出token并更新统计信息
completion_tokens = num_tokens_from_string(think_content + response_content)
update_model_stats(model, prompt_tokens, completion_tokens)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": f"<think>\n{think_content}\n</think>\n{response_content}"
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
else:
for line in response.iter_lines():
if line:
decoded_line = line.decode("utf-8")
segment = extract_segment(decoded_line)
if segment:
buffer.write(segment)
response_content = buffer.getvalue()
# 计算输出token并更新统计信息
completion_tokens = num_tokens_from_string(response_content)
update_model_stats(model, prompt_tokens, completion_tokens)
return jsonify({
"id": f"chatcmpl-{str(uuid.uuid4())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
})
except requests.exceptions.RequestException as e:
error_details = str(e)
if hasattr(e, 'response') and e.response is not None:
if hasattr(e.response, 'text'):
error_details += f" - Response: {e.response.text[:200]}"
print(f"发送消息失败: {error_details}")
return jsonify({"error": f"Failed to send message: {error_details}"}), 500
def format_message(messages):
buffer = io.StringIO()
role_map, prefix, messages = extract_role(messages)
for message in messages:
role = message.get("role")
role = "\b" + role_map[role] if prefix else role_map[role]
content = message.get("content").replace("\\n", "\n")
pattern = re.compile(r"<\|removeRole\|>\n")
if pattern.match(content):
content = pattern.sub("", content)
buffer.write(f"{content}\n")
else:
buffer.write(f"{role}: {content}\n\n")
formatted_message = buffer.getvalue()
return formatted_message
def extract_role(messages):
role_map = {"user": "Human", "assistant": "Assistant", "system": "System"}
prefix = False
first_message = messages[0]["content"]
pattern = re.compile(
r"""
<roleInfo>\s*
user:\s*(?P<user>[^\n]*)\s*
assistant:\s*(?P<assistant>[^\n]*)\s*
system:\s*(?P<system>[^\n]*)\s*
prefix:\s*(?P<prefix>[^\n]*)\s*
</roleInfo>\n
""",
re.VERBOSE,
)
match = pattern.search(first_message)
if match:
role_map = {
"user": match.group("user"),
"assistant": match.group("assistant"),
"system": match.group("system"),
}
prefix = match.group("prefix") == "1"
messages[0]["content"] = pattern.sub("", first_message)
print(f"Extracted role map:")
print(
f"User: {role_map['user']}, Assistant: {role_map['assistant']}, System: {role_map['system']}"
)
print(f"Using prefix: {prefix}")
return (role_map, prefix, messages)
@app.route("/health", methods=["GET"])
def health_check():
global health_check_counter
health_check_counter += 1
return jsonify({
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"checks": health_check_counter
})
def keep_alive():
"""每20分钟进行一次自我健康检查"""
while True:
try:
requests.get("http://127.0.0.1:7860/health")
time.sleep(1200) # 20分钟
except:
pass # 忽略错误,保持运行
@app.route("/", methods=["GET"])
def index():
# 如果需要密码且用户未登录,重定向到登录页面
if PASSWORD and not flask_session.get('logged_in'):
return redirect(url_for('login'))
# 否则重定向到仪表盘
return redirect(url_for('dashboard'))
# 获取OpenAI的tokenizer来计算token数
def num_tokens_from_string(string, model="gpt-3.5-turbo"):
"""计算文本的token数量"""
try:
encoding = tiktoken.encoding_for_model(model)
num_tokens = len(encoding.encode(string))
print(f"使用tiktoken计算token数: {num_tokens}")
return num_tokens
except Exception as e:
# 如果tiktoken不支持模型或者出错,使用简单的估算
estimated_tokens = len(string) // 4 # 粗略估计每个token约4个字符
print(f"使用估算方法计算token数: {estimated_tokens} (原因: {str(e)})")
return estimated_tokens
# 更新模型使用统计
def update_model_stats(model, prompt_tokens, completion_tokens):
global model_usage_stats, total_tokens
if model not in model_usage_stats:
model_usage_stats[model] = {
"count": 0,
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
model_usage_stats[model]["count"] += 1
model_usage_stats[model]["prompt_tokens"] += prompt_tokens
model_usage_stats[model]["completion_tokens"] += completion_tokens
model_usage_stats[model]["total_tokens"] += (prompt_tokens + completion_tokens)
total_tokens["prompt"] += prompt_tokens
total_tokens["completion"] += completion_tokens
total_tokens["total"] += (prompt_tokens + completion_tokens)
# 获取计算点信息
def get_compute_points():
global compute_points, compute_points_log
# 限制只获取前两个用户的数据
users_to_fetch = USER_DATA[:2]
new_compute_points = []
new_compute_points_log = []
for user_index, user_config in enumerate(users_to_fetch):
user_compute_points = {
"left": 0, "total": 0, "used": 0, "percentage": 0, "last_update": None, "error": None
}
user_compute_points_log = {
"columns": {}, "log": [], "error": None
}
try:
headers = {
"Cookie": user_config["cookies"],
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36",
}
# 获取计算点信息
compute_url = "https://abacus.art/api/trpc/user.getComputePoints"
response = requests.get(compute_url, headers=headers)
response.raise_for_status()
data = response.json()
points_data = data.get("result", {}).get("data", {})
user_compute_points["left"] = points_data.get("left", 0)
user_compute_points["total"] = points_data.get("total", 0)
user_compute_points["used"] = points_data.get("used", 0)
user_compute_points["percentage"] = points_data.get("percentage", 0)
user_compute_points["last_update"] = datetime.now()
# 获取计算点使用日志
log_url = "https://abacus.art/api/trpc/user.getComputePointsLog?batch=1&input=%7B%220%22%3A%7B%22json%22%3Anull%2C%22meta%22%3A%7B%22values%22%3A%5B%22undefined%22%5D%7D%7D%7D"
response = requests.get(log_url, headers=headers)
response.raise_for_status()
log_data = response.json()
log_result = log_data[0].get("result", {}).get("data", {}).get("json", {})
user_compute_points_log["columns"] = log_result.get("columns", {})
user_compute_points_log["log"] = log_result.get("log", [])
except requests.exceptions.RequestException as e:
error_message = f"用户 {user_index + 1} 获取计算点信息异常: {e}"
print(error_message)
user_compute_points["error"] = str(e)
user_compute_points_log["error"] = str(e)
except Exception as e:
error_message = f"用户 {user_index + 1} 处理计算点信息时发生未知错误: {e}"
print(error_message)
user_compute_points["error"] = str(e)
user_compute_points_log["error"] = str(e)
new_compute_points.append(user_compute_points)
new_compute_points_log.append(user_compute_points_log)
# 更新全局变量
compute_points = new_compute_points
compute_points_log = new_compute_points_log
# 添加登录相关路由
@app.route("/login", methods=["GET", "POST"])
def login():
error = None
if request.method == "POST":
password = request.form.get("password")
if password and hashlib.sha256(password.encode()).hexdigest() == PASSWORD:
flask_session['logged_in'] = True
flask_session.permanent = True
return redirect(url_for('dashboard'))
else:
# 密码错误时提示使用环境变量密码
error = "密码不正确。请使用设置的环境变量 password 或 password.txt 中的值作为密码和API认证密钥。"
# 传递空间URL给模板
return render_template('login.html', error=error, space_url=SPACE_URL)
@app.route("/logout")
def logout():
flask_session.clear()
return redirect(url_for('login'))
@app.route("/dashboard")
@require_auth
def dashboard():
# 在每次访问仪表盘时更新计算点信息
get_compute_points()
uptime = datetime.now() - START_TIME
days = uptime.days
hours, remainder = divmod(uptime.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
if days > 0:
uptime_str = f"{days}天 {hours}小时 {minutes}分钟"
elif hours > 0:
uptime_str = f"{hours}小时 {minutes}分钟"
else:
uptime_str = f"{minutes}分钟 {seconds}秒"
return render_template(
'dashboard.html',
uptime=uptime_str,
health_checks=health_check_counter,
user_count=USER_NUM,
models=sorted(list(MODELS)),
year=datetime.now().year,
model_stats=model_usage_stats,
total_tokens=total_tokens,
compute_points=compute_points,
compute_points_log=compute_points_log,
space_url=SPACE_URL # 传递空间URL
)
# 获取Hugging Face Space URL
def get_space_url():
# 尝试从环境变量获取
space_url = os.environ.get("SPACE_URL")
if space_url:
return space_url
# 如果SPACE_URL不存在,尝试从SPACE_ID构建
space_id = os.environ.get("SPACE_ID")
if space_id:
username, space_name = space_id.split("/")
return f"https://{username}-{space_name}.hf.space"
# 如果以上都不存在,尝试从单独的用户名和空间名构建
username = os.environ.get("SPACE_USERNAME")
space_name = os.environ.get("SPACE_NAME")
if username and space_name:
return f"https://{username}-{space_name}.hf.space"
# 默认返回None
return None
# 获取空间URL
SPACE_URL = get_space_url()
if __name__ == "__main__":
# 启动保活线程
threading.Thread(target=keep_alive, daemon=True).start()
# 获取初始计算点信息
get_compute_points()
port = int(os.environ.get("PORT", 9876))
app.run(port=port, host="0.0.0.0")
|