File size: 6,545 Bytes
901dbf6
 
 
 
 
 
 
3c8c115
901dbf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73bc32e
 
901dbf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545abd8
901dbf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1449b
 
 
 
 
 
a7eb438
ab1449b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import streamlit as st
from paddleocr import PaddleOCR
from PIL import ImageDraw, ImageFont
import torch
from transformers import AutoProcessor,LayoutLMv3ForTokenClassification
import numpy as np

model_Hugging_path = "Noureddinesa/Output_LayoutLMv3_v5"


#############################################################################
#############################################################################
def Labels():
    labels = ['InvNum', 'InvDate', 'Fourni', 'TTC', 'TVA', 'TT', 'Autre']
    id2label = {v: k for v, k in enumerate(labels)}
    label2id = {k: v for v, k in enumerate(labels)}
    return id2label, label2id
  
#############################################################################
#############################################################################
def Paddle():
    ocr = PaddleOCR(use_angle_cls=False,lang='fr',rec=False)
    return ocr

def processbbox(BBOX, width, height):
    bbox = []
    bbox.append(BBOX[0][0])
    bbox.append(BBOX[0][1])
    bbox.append(BBOX[2][0])
    bbox.append(BBOX[2][1])
    #Scaling
    bbox[0]= 1000*bbox[0]/width # X1
    bbox[1]= 1000*bbox[1]/height # Y1
    bbox[2]= 1000*bbox[2]/width # X2
    bbox[3]= 1000*bbox[3]/height # Y2
    for i in range(4):
        bbox[i] = int(bbox[i])
    return bbox


def Preprocess(image):
    image_array = np.array(image)
    ocr = Paddle()
    width, height = image.size
    results = ocr.ocr(image_array, cls=True)
    results = results[0]
    test_dict = {'image': image ,'tokens':[], "bboxes":[]}
    for item in results :
       bbox = processbbox(item[0], width, height)
       test_dict['tokens'].append(item[1][0])
       test_dict['bboxes'].append(bbox)

    print(test_dict['bboxes'])
    print(test_dict['tokens'])
    return test_dict

#############################################################################
#############################################################################
def Encode(image):
    example = Preprocess(image)
    image = example["image"]
    words = example["tokens"]
    boxes = example["bboxes"]
    processor = AutoProcessor.from_pretrained(model_Hugging_path, apply_ocr=False)
    encoding = processor(image, words, boxes=boxes,return_offsets_mapping=True,truncation=True, max_length=512, padding="max_length", return_tensors="pt")
    offset_mapping = encoding.pop('offset_mapping')
    return encoding, offset_mapping,words

def unnormalize_box(bbox, width, height):
     return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
     ]
    
def Run_model(image):
    encoding,offset_mapping,words = Encode(image)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # load the fine-tuned model from the hub
    model = LayoutLMv3ForTokenClassification.from_pretrained(model_Hugging_path)
    model.to(device)
    # forward pass
    outputs = model(**encoding)
    
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()
    
    width, height = image.size
    
    id2label, _  = Labels()
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
    return true_predictions,true_boxes,words


def Get_Json(true_predictions,words):
    Results = {}
    i = 0
    for prd in true_predictions:
        if prd in ['InvNum','Fourni', 'InvDate','TT','TTC','TVA']:
                #print(i,prd,words[i-1])
                Results[prd] = words[i-1]
        i+=1
    key_mapping = {'InvNum':'Numéro de facture','Fourni':'Fournisseur', 'InvDate':'Date Facture','TT':'Total HT','TTC':'Total TTC','TVA':'TVA'}
    Results = {key_mapping.get(key, key): value for key, value in Results.items()}
    return Results
      
    
def Draw(image):
    true_predictions, true_boxes,words = Run_model(image)
    draw = ImageDraw.Draw(image)

    label2color = {
        'InvNum': 'blue',
        'InvDate': 'green',
        'Fourni': 'orange',
        'TTC':'purple',
        'TVA': 'magenta',
        'TT': 'red',
        'Autre': 'black'
    }

    # Adjust the thickness of the rectangle outline and label text position
    rectangle_thickness = 4
    label_x_offset = 20
    label_y_offset = -30

    # Custom font size
    custom_font_size = 25

    # Load a font with the custom size
    font_path = "arial.ttf"  # Specify the path to your font file
    custom_font = ImageFont.truetype(font_path, custom_font_size)

    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = prediction
        # Check if the predicted label exists in the label2color dictionary
        if predicted_label in label2color:
            color = label2color[predicted_label]
        else:
            color = 'black'  # Default color if label is not found
        if predicted_label != "Autre":
            draw.rectangle(box, outline=color, width=rectangle_thickness)
            # Draw text using the custom font and size
            draw.rectangle((box[0], box[1]+ label_y_offset,box[2],box[3]+ label_y_offset), fill=color)
            draw.text((box[0] + label_x_offset, box[1] + label_y_offset), text=predicted_label, fill='white', font=custom_font)
    
    # Get the Results Json File 
    Results = Get_Json(true_predictions,words)
    
    return image,Results


def Add_Results(data):
    # Render the table
    for key, value in data.items():
        data[key] = st.sidebar.text_input(key, value)

#############################################################################
#############################################################################
def Change_Image(image1,image2):
        # Initialize session state
        if 'current_image' not in st.session_state:
            st.session_state.current_image = 'image1'

        # Button to switch between images
        if st.sidebar.button('Remove'):
            if st.session_state.current_image == 'image1':
                st.session_state.current_image = 'image2'
            else:
                st.session_state.current_image = 'image1'
        # Display the selected image
        if st.session_state.current_image == 'image1':
            st.image(image1, caption='Output', use_column_width=True)
        else:
            st.image(image2, caption='Image initiale', use_column_width=True)