Spaces:
Running
Running
import bs4 | |
import os | |
from langchain_text_splitters import CharacterTextSplitter | |
import requests | |
import streamlit as st | |
import sys | |
from vectordb import add_image_to_index, add_pdf_to_index, update_vectordb | |
sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
def process_text(text: str, text_embedding_model): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1200, | |
chunk_overlap=200, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
chunks = text_splitter.split_text(text) | |
text_embeddings = text_embedding_model.encode(chunks) | |
for chunk, embedding in zip(chunks, text_embeddings): | |
index = update_vectordb(index_path="text_index.index", embedding=embedding, text_content=chunk) | |
return index | |