File size: 6,890 Bytes
19a6fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc8737
19a6fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498e5e4
 
 
 
19a6fbb
 
bdc8737
 
19a6fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc8737
 
19a6fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import clip
import clip.model
from datasets import Dataset
import json
import numpy as np
import pandas as pd
from PIL import Image
from sklearn.model_selection import train_test_split
import streamlit as st
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import tqdm
import os


def model_training():
    dataset_path = st.session_state.get("selected_dataset", None)
    if not dataset_path or dataset_path == "":
        st.error("Please select a dataset to proceed.")
        return
    
    if not os.path.exists(f"annotations/{dataset_path}/annotations.json"):
        st.error("No annotations found for the selected dataset.")
        return
    
    with open(f"annotations/{dataset_path}/annotations.json", "r") as f:
        annotations_dict = json.load(f)

    annotations_df = pd.DataFrame(annotations_dict.items(), columns=['image_path', 'annotation'])
    annotations_df.columns = ['file_name', 'text']
    st.subheader("Data Preview")
    st.dataframe(annotations_df.head(), use_container_width=True)

    if len(annotations_df) < 2:
        st.error("Not enough data to train the model.")
        return

    test_size = st.selectbox("Select Test Size", options=[0.1, 0.2, 0.3, 0.4, 0.5], index=1)
    train_df, val_df = train_test_split(annotations_df, test_size=test_size, random_state=42)
    if len(train_df) < 2:
        st.error("Not enough data to train the model.")
    st.write(f"Train Size: {len(train_df)} | Validation Size: {len(val_df)}")
    col1, col2 = st.columns(2)
    with col1:
        optimizer = st.selectbox("Select Optimizer", options=optim.__all__, index=3)
        optimizer = getattr(optim, optimizer)
    with col2:
        batch_size_options = [2, 4, 8, 16, 32, 64, 128]
        ideal_batch_size = int(np.sqrt(len(train_df)))
        if ideal_batch_size in batch_size_options:
            ideal_batch_size_index = batch_size_options.index(ideal_batch_size)
        else:
            for batch_size in batch_size_options:
                if batch_size > ideal_batch_size:
                    ideal_batch_size_index = batch_size_options.index(batch_size) - 1
                    if ideal_batch_size_index < 0:
                        ideal_batch_size_index = 0
                    break
        batch_size = st.selectbox("Select Batch Size", options=[2, 4, 8, 16, 32, 64, 128], index=ideal_batch_size_index)
    
    col1, col2 = st.columns(2)
    with col1:
        weight_decay = st.number_input("Weight Decay", value=0.3, format="%.5f")
    with col2:
        learning_rate = st.number_input("Learning Rate", value=1e-3, format="%.5f")

    device = "cuda" if torch.cuda.is_available() else "cpu"

    if st.button("Train", key="train_button", use_container_width=True, type="primary"):
        def convert_models_to_fp32(model):
            for p in model.parameters():
                p.data = p.data.float()
                p.grad.data = p.grad.data.float()

        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        with st.spinner("Loading Model..."):
            model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
            clip.model.convert_weights(model)

        loss_img = nn.CrossEntropyLoss()
        loss_txt = nn.CrossEntropyLoss()
        optimizer = optimizer(model.parameters(), lr=learning_rate, betas=(0.9, 0.98), eps=1e-6, weight_decay=weight_decay)

        def collate_fn(batch):
            images = []
            texts = []
            for entry in batch:
                img = entry['file_name']
                text = entry['text']
                images.append(img)
                texts.append(text)
            images = [preprocess(Image.open(img_path)) for img_path in images]
            images = torch.stack(images)
            return images, list(texts)
        
        train_df['file_name'] = train_df['file_name'].str.strip()
        val_df['file_name'] = val_df['file_name'].str.strip()

        dataset = Dataset.from_pandas(train_df)
        dataloader = DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=True,
            collate_fn=collate_fn
        )

        val_dataset = Dataset.from_pandas(val_df)
        val_dataloader = DataLoader(
            val_dataset,
            batch_size=batch_size,
            shuffle=False,
            collate_fn=collate_fn
        )

        def calculate_val_loss(model):
            model.eval()
            total_loss = 0
            with torch.no_grad():
                for batch_idx, (images, texts) in enumerate(val_dataloader):
                    texts = clip.tokenize(texts).to(device)

                    images = images.to(device)
                    texts = texts.to(device)

                    logits_per_image, logits_per_text = model(images, texts)

                    ground_truth = torch.arange(len(images)).to(device)
                    image_loss = loss_img(logits_per_image, ground_truth)
                    text_loss = loss_txt(logits_per_text, ground_truth)

                    total_loss += (image_loss + text_loss) / 2

            model.train()
            return total_loss / len(val_dataloader)

        step = 0
        progress_bar = st.progress(0, text=f"Model Training in progress... \nStep: {step}/{len(dataloader)} | {0 / len(dataloader)}% Completed | Loss: 0.0")
        for batch_idx, (images, texts) in enumerate(dataloader):
            optimizer.zero_grad()

            texts = clip.tokenize(texts).to(device)

            images = images.to(device)
            texts = texts.to(device)

            logits_per_image, logits_per_text = model(images, texts)

            ground_truth = torch.arange(len(images)).to(device)
            image_loss = loss_img(logits_per_image, ground_truth)
            text_loss = loss_txt(logits_per_text, ground_truth)
            total_loss = (image_loss + text_loss) / 2
            total_loss.backward()

            if step % 20 == 0:
                print("\nStep : ", step)
                print("Total Loss : ", total_loss.item())
                val_loss = calculate_val_loss(model)
                print("\nValidation Loss : ", val_loss.item())
                print("\n")

            convert_models_to_fp32(model)
            optimizer.step()
            clip.model.convert_weights(model)
            step += 1
            progress_bar.progress((batch_idx + 1) / len(dataloader), f"Model Training in progress... \nStep: {step}/{len(dataloader)} | {round((batch_idx + 1) / len(dataloader) * 100)}% Completed | Loss: {val_loss.item():.4f}")

        st.toast("Training Completed!", icon="πŸŽ‰")

        with st.spinner("Saving Model..."):
            finetuned_model = model.eval()
            torch.save(finetuned_model.state_dict(), f"annotations/{dataset_path}/finetuned_model.pt")

        st.success("Model Saved Successfully!")