Spaces:
Sleeping
Sleeping
File size: 12,483 Bytes
d82b09f e4f6c78 d82b09f fea1e8b d82b09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# -*- coding: utf-8 -*-
"""HabibiTranslator.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1lYP3XxUCWdiihU0mIejW_KCqTvy7-tz6
"""
import torch
torch.cuda.is_available()
import torch
import torch.nn as nn
import torch.optim as optim
import math
from datasets import load_dataset
import numpy as np
from collections import Counter
import gradio as gr
# Seting random seed for reproducibility
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset = load_dataset('Helsinki-NLP/tatoeba_mt', 'ara-eng', trust_remote_code=True)
# tokenization (word-level)
def tokenize(text):
return text.split()
# Building vocabulary from dataset
def build_vocab(data, tokenizer, min_freq=2):
counter = Counter()
for example in data:
counter.update(tokenizer(example['sourceString']))
counter.update(tokenizer(example['targetString']))
# Adding special tokens
specials = ['<pad>', '<sos>', '<eos>', '<unk>']
vocab = specials + [word for word, freq in counter.items() if freq >= min_freq]
word2idx = {word: idx for idx, word in enumerate(vocab)}
idx2word = {idx: word for word, idx in word2idx.items()}
return word2idx, idx2word
# Converting text to tensor (adjusted to fit special tokens within max_len)
def text_to_tensor(text, vocab, tokenizer, max_len=52):
tokens = tokenizer(text)[:max_len - 2] # Reserving space for <sos> and <eos>
tokens = ['<sos>'] + tokens + ['<eos>']
tensor = [vocab.get(token, vocab['<unk>']) for token in tokens]
return torch.tensor(tensor, dtype=torch.long)
train_data = dataset['validation'] # Using validation as training data for demo
test_data = dataset['test']
# Building shared vocabulary (for simplicity, using both languages in one vocab)
word2idx, idx2word = build_vocab(train_data, tokenize)
# Hyperparameters for data
max_len = 52 # Increased to account for <sos> and <eos>
batch_size = 32
train_data_list = list(train_data) # Convert Dataset to list once
print(f"Length of train_data_list: {len(train_data_list)}")
def get_batches(data_list, batch_size, max_len=52):
total_batches = len(data_list) // batch_size + (1 if len(data_list) % batch_size else 0)
print(f"Total batches to process: {total_batches}")
for i in range(0, len(data_list), batch_size):
batch = data_list[i:i + batch_size]
src_batch = [text_to_tensor(example['sourceString'], word2idx, tokenize, max_len) for example in batch]
tgt_batch = [text_to_tensor(example['targetString'], word2idx, tokenize, max_len) for example in batch]
src_batch = nn.utils.rnn.pad_sequence(src_batch, padding_value=word2idx['<pad>'], batch_first=False).to(device)
tgt_batch = nn.utils.rnn.pad_sequence(tgt_batch, padding_value=word2idx['<pad>'], batch_first=False).to(device)
if src_batch.size(0) > max_len:
src_batch = src_batch[:max_len, :]
elif src_batch.size(0) < max_len:
padding = torch.full((max_len - src_batch.size(0), src_batch.size(1)), word2idx['<pad>'], dtype=torch.long).to(device)
src_batch = torch.cat([src_batch, padding], dim=0)
if tgt_batch.size(0) > max_len:
tgt_batch = tgt_batch[:max_len, :]
elif tgt_batch.size(0) < max_len:
padding = torch.full((max_len - tgt_batch.size(0), tgt_batch.size(1)), word2idx['<pad>'], dtype=torch.long).to(device)
tgt_batch = torch.cat([tgt_batch, padding], dim=0)
src_batch = src_batch.transpose(0, 1) # [batch_size, seq_len]
tgt_batch = tgt_batch.transpose(0, 1) # [batch_size, seq_len]
yield src_batch, tgt_batch
print("Revised Chunk 1 (Seventh Iteration) completed: Dataset loaded and preprocessing debugged.")
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=52):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0) # Shape: (1, max_len, d_model)
self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
self.W_q = nn.Linear(d_model, d_model)
self.W_k = nn.Linear(d_model, d_model)
self.W_v = nn.Linear(d_model, d_model)
self.W_o = nn.Linear(d_model, d_model)
def scaled_dot_product_attention(self, Q, K, V, mask=None):
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attn = torch.softmax(scores, dim=-1)
return torch.matmul(attn, V)
def forward(self, Q, K, V, mask=None):
batch_size = Q.size(0)
seq_len_q = Q.size(1)
seq_len_k = K.size(1)
Q = self.W_q(Q)
K = self.W_k(K)
V = self.W_v(V)
Q = Q.view(batch_size, seq_len_q, self.num_heads, self.d_k).transpose(1, 2)
K = K.view(batch_size, seq_len_k, self.num_heads, self.d_k).transpose(1, 2)
V = V.view(batch_size, seq_len_k, self.num_heads, self.d_k).transpose(1, 2)
output = self.scaled_dot_product_attention(Q, K, V, mask)
output = output.transpose(1, 2).contiguous().view(batch_size, seq_len_q, self.d_model)
return self.W_o(output)
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.relu = nn.ReLU()
def forward(self, x):
return self.linear2(self.relu(self.linear1(x)))
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ff = FeedForward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None):
attn_output = self.mha(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
ff_output = self.ff(x)
return self.norm2(x + self.dropout(ff_output))
class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ff = FeedForward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_output, src_mask=None, tgt_mask=None):
attn1_output = self.mha1(x, x, x, tgt_mask)
x = self.norm1(x + self.dropout(attn1_output))
attn2_output = self.mha2(x, enc_output, enc_output, src_mask)
x = self.norm2(x + self.dropout(attn2_output))
ff_output = self.ff(x)
return self.norm3(x + self.dropout(ff_output))
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=256, num_heads=8, num_layers=3, d_ff=1024, max_len=52, dropout=0.1):
super().__init__()
self.d_model = d_model
self.src_embedding = nn.Embedding(src_vocab_size, d_model)
self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model, max_len)
self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.fc_out = nn.Linear(d_model, tgt_vocab_size)
self.dropout = nn.Dropout(dropout)
def generate_mask(self, src, tgt):
src_mask = (src != word2idx['<pad>']).unsqueeze(1).unsqueeze(2)
tgt_mask = (tgt != word2idx['<pad>']).unsqueeze(1).unsqueeze(3)
seq_len = tgt.size(1)
nopeak_mask = (1 - torch.triu(torch.ones(1, seq_len, seq_len), diagonal=1)).bool().to(device)
tgt_mask = tgt_mask & nopeak_mask
return src_mask, tgt_mask
def forward(self, src, tgt):
src_mask, tgt_mask = self.generate_mask(src, tgt)
src_embedded = self.dropout(self.pos_encoding(self.src_embedding(src) * math.sqrt(self.d_model)))
tgt_embedded = self.dropout(self.pos_encoding(self.tgt_embedding(tgt) * math.sqrt(self.d_model)))
enc_output = src_embedded
for enc_layer in self.encoder_layers:
enc_output = enc_layer(enc_output, src_mask)
dec_output = tgt_embedded
for dec_layer in self.decoder_layers:
dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)
return self.fc_out(dec_output)
print("Revised Chunk 2 (Fourth Iteration) completed: Transformer model fixed with max_len=52.")
vocab_size = len(word2idx)
model = Transformer(
src_vocab_size=vocab_size,
tgt_vocab_size=vocab_size,
d_model=256,
num_heads=8,
num_layers=3,
d_ff=1024,
max_len=52,
dropout=0.1
).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss(ignore_index=word2idx['<pad>'])
optimizer = optim.Adam(model.parameters(), lr=0.0001)
# Training loop with progress feedback
def train(model, data, epochs=20):
model.train()
total_batches = len(data) // batch_size + (1 if len(data) % batch_size else 0)
print(f"Total batches per epoch: {total_batches}")
for epoch in range(epochs):
total_loss = 0
for batch_idx, (src_batch, tgt_batch) in enumerate(get_batches(data, batch_size, max_len=52), 1):
if batch_idx % 100 == 0: # Printing every 100 batches for feedback
print(f"Epoch {epoch + 1}, Batch {batch_idx}/{total_batches} ")
optimizer.zero_grad()
output = model(src_batch, tgt_batch[:, :-1])
loss = criterion(output.view(-1, vocab_size), tgt_batch[:, 1:].reshape(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / total_batches
print(f"Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}")
# Main function
def translate(model, sentence, max_len=52):
model.eval()
with torch.no_grad():
src = text_to_tensor(sentence, word2idx, tokenize, max_len).unsqueeze(0).to(device)
tgt = torch.tensor([word2idx['<sos>']], dtype=torch.long).unsqueeze(0).to(device)
for _ in range(max_len):
output = model(src, tgt)
next_token = output[:, -1, :].argmax(dim=-1).item()
if next_token == word2idx['<eos>']:
break
tgt = torch.cat([tgt, torch.tensor([[next_token]], dtype=torch.long).to(device)], dim=1)
translated = [idx2word[idx.item()] for idx in tgt[0] if idx.item() in idx2word]
return ' '.join(translated[1:])
# Testing
test_sentence = "ุนู
ุฑู ุฑุงูุญ ุงูู
ูุณููุ"
translated = translate(model, test_sentence)
print(f"Input: {test_sentence}")
print(f"Translated: {translated}")
print("Chunk 3 completed: Training and inference implemented.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Instantiate the model (assuming train_dataset is already defined)
model = Transformer(
src_vocab_size=vocab_size,
tgt_vocab_size=vocab_size
).to(device)
# Load model checkpoint and set to evaluation mode
model.load_state_dict(torch.load("habibi.pth", map_location=device))
model.eval()
def gradio_translate(text):
return translate(model, text)
interface = gr.Interface(
fn=gradio_translate,
inputs=gr.Textbox(lines=2, placeholder="Enter Arabic sentence here..."),
outputs="text",
title="Habibi-Translator",
description="Translate Arabic sentences to English using a Transformer model."
)
interface.launch()
print("Chunk 4 completed: Gradio interface deployed.")
|