asd
Browse files
app.py
CHANGED
@@ -3,8 +3,7 @@ import json
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
import
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
|
8 |
from sentence_splitter import SentenceSplitter
|
9 |
from itertools import product
|
10 |
|
@@ -16,15 +15,18 @@ device = torch.device("cuda" if cuda_available else "cpu")
|
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
# Initialize paraphraser model and tokenizer
|
19 |
-
paraphraser_model_name = "
|
20 |
-
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name,
|
21 |
-
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name,
|
22 |
|
23 |
# Initialize classifier model and tokenizer
|
24 |
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
25 |
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
|
26 |
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
|
27 |
|
|
|
|
|
|
|
28 |
# Initialize sentence splitter
|
29 |
splitter = SentenceSplitter(language='en')
|
30 |
|
@@ -38,45 +40,50 @@ def classify_text(text):
|
|
38 |
main_score = probabilities[0][predicted_class].item()
|
39 |
return main_label, main_score
|
40 |
|
41 |
-
def
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
words[i] = words[i].lower() if words[i][0].isupper() else words[i].capitalize()
|
46 |
-
return ' '.join(words)
|
47 |
|
48 |
@spaces.GPU
|
49 |
def generate_paraphrases(text, setting, output_format):
|
50 |
sentences = splitter.split(text)
|
51 |
all_sentence_paraphrases = []
|
52 |
-
|
53 |
if setting == 1:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
elif setting == 2:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
elif setting == 3:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
68 |
elif setting == 4:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
else:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
|
|
|
|
80 |
|
81 |
formatted_output = "Original text:\n" + text + "\n\n"
|
82 |
formatted_output += "Paraphrased versions:\n"
|
@@ -89,38 +96,41 @@ def generate_paraphrases(text, setting, output_format):
|
|
89 |
}
|
90 |
|
91 |
for i, sentence in enumerate(sentences):
|
92 |
-
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).
|
93 |
|
94 |
-
# Generate paraphrases using
|
95 |
outputs = paraphraser_model.generate(
|
96 |
-
inputs,
|
97 |
-
|
98 |
num_return_sequences=num_return_sequences,
|
|
|
|
|
99 |
temperature=temperature,
|
100 |
-
|
101 |
top_k=top_k,
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
)
|
106 |
|
107 |
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
108 |
-
|
|
|
109 |
|
110 |
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
111 |
-
for j, paraphrase in enumerate(
|
112 |
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
113 |
|
114 |
json_output["paraphrased_versions"].append({
|
115 |
f"original_sentence_{i+1}": sentence,
|
116 |
-
"paraphrases":
|
117 |
})
|
118 |
|
119 |
-
all_sentence_paraphrases.append(
|
120 |
formatted_output += "\n"
|
121 |
|
122 |
all_combinations = list(product(*all_sentence_paraphrases))
|
123 |
-
random.shuffle(all_combinations)
|
124 |
|
125 |
formatted_output += "\nCombined paraphrased versions:\n"
|
126 |
combined_versions = []
|
@@ -136,7 +146,7 @@ def generate_paraphrases(text, setting, output_format):
|
|
136 |
label, score = classify_text(version)
|
137 |
formatted_output += f"Version {i}:\n{version}\n"
|
138 |
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
139 |
-
if label == "human-produced" or (label == "machine-generated" and score < 0.
|
140 |
human_versions.append((version, label, score))
|
141 |
|
142 |
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
|
@@ -167,7 +177,7 @@ iface = gr.Interface(
|
|
167 |
fn=generate_paraphrases,
|
168 |
inputs=[
|
169 |
gr.Textbox(lines=5, label="Input Text"),
|
170 |
-
gr.Slider(minimum=1, maximum=5, step=1, label="
|
171 |
gr.Radio(["text", "json"], label="Output Format")
|
172 |
],
|
173 |
outputs=[
|
@@ -175,7 +185,7 @@ iface = gr.Interface(
|
|
175 |
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
|
176 |
],
|
177 |
title="Advanced Diverse Paraphraser with Human-like Filter",
|
178 |
-
description="Enter a text, select a
|
179 |
)
|
180 |
|
181 |
# Launch the interface
|
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, pipeline
|
|
|
7 |
from sentence_splitter import SentenceSplitter
|
8 |
from itertools import product
|
9 |
|
|
|
15 |
print(f"Using device: {device}")
|
16 |
|
17 |
# Initialize paraphraser model and tokenizer
|
18 |
+
paraphraser_model_name = "NoaiGPT/777"
|
19 |
+
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
|
20 |
+
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
|
21 |
|
22 |
# Initialize classifier model and tokenizer
|
23 |
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
24 |
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
|
25 |
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
|
26 |
|
27 |
+
# Initialize spelling correction pipeline
|
28 |
+
spelling_correction = pipeline("text2text-generation", model="oliverguhr/spelling-correction-english-base", device=0 if cuda_available else -1)
|
29 |
+
|
30 |
# Initialize sentence splitter
|
31 |
splitter = SentenceSplitter(language='en')
|
32 |
|
|
|
40 |
main_score = probabilities[0][predicted_class].item()
|
41 |
return main_label, main_score
|
42 |
|
43 |
+
def correct_spelling(text):
|
44 |
+
corrected_text = spelling_correction(text, max_length=2048)[0]['generated_text']
|
45 |
+
print(corrected_text)
|
46 |
+
return corrected_text
|
|
|
|
|
47 |
|
48 |
@spaces.GPU
|
49 |
def generate_paraphrases(text, setting, output_format):
|
50 |
sentences = splitter.split(text)
|
51 |
all_sentence_paraphrases = []
|
52 |
+
|
53 |
if setting == 1:
|
54 |
+
num_return_sequences = 5
|
55 |
+
repetition_penalty = 1.1
|
56 |
+
no_repeat_ngram_size = 2
|
57 |
+
temperature = 1.0
|
58 |
+
max_length = 128
|
59 |
elif setting == 2:
|
60 |
+
num_return_sequences = 10
|
61 |
+
repetition_penalty = 1.2
|
62 |
+
no_repeat_ngram_size = 3
|
63 |
+
temperature = 1.2
|
64 |
+
max_length = 192
|
65 |
elif setting == 3:
|
66 |
+
num_return_sequences = 15
|
67 |
+
repetition_penalty = 1.3
|
68 |
+
no_repeat_ngram_size = 4
|
69 |
+
temperature = 1.4
|
70 |
+
max_length = 256
|
71 |
elif setting == 4:
|
72 |
+
num_return_sequences = 20
|
73 |
+
repetition_penalty = 1.4
|
74 |
+
no_repeat_ngram_size = 5
|
75 |
+
temperature = 1.6
|
76 |
+
max_length = 320
|
77 |
else:
|
78 |
+
num_return_sequences = 25
|
79 |
+
repetition_penalty = 1.5
|
80 |
+
no_repeat_ngram_size = 6
|
81 |
+
temperature = 1.8
|
82 |
+
max_length = 384
|
83 |
|
84 |
+
top_k = 50
|
85 |
+
top_p = 0.95
|
86 |
+
length_penalty = 1.0
|
87 |
|
88 |
formatted_output = "Original text:\n" + text + "\n\n"
|
89 |
formatted_output += "Paraphrased versions:\n"
|
|
|
96 |
}
|
97 |
|
98 |
for i, sentence in enumerate(sentences):
|
99 |
+
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
|
100 |
|
101 |
+
# Generate paraphrases using the specified parameters
|
102 |
outputs = paraphraser_model.generate(
|
103 |
+
inputs.input_ids,
|
104 |
+
attention_mask=inputs.attention_mask,
|
105 |
num_return_sequences=num_return_sequences,
|
106 |
+
repetition_penalty=repetition_penalty,
|
107 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
108 |
temperature=temperature,
|
109 |
+
max_length=max_length,
|
110 |
top_k=top_k,
|
111 |
+
top_p=top_p,
|
112 |
+
do_sample=True,
|
113 |
+
early_stopping=False,
|
114 |
+
length_penalty=length_penalty
|
115 |
)
|
116 |
|
117 |
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
118 |
+
|
119 |
+
corrected_paraphrases = [correct_spelling(paraphrase) for paraphrase in paraphrases]
|
120 |
|
121 |
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
122 |
+
for j, paraphrase in enumerate(corrected_paraphrases, 1):
|
123 |
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
124 |
|
125 |
json_output["paraphrased_versions"].append({
|
126 |
f"original_sentence_{i+1}": sentence,
|
127 |
+
"paraphrases": corrected_paraphrases
|
128 |
})
|
129 |
|
130 |
+
all_sentence_paraphrases.append(corrected_paraphrases)
|
131 |
formatted_output += "\n"
|
132 |
|
133 |
all_combinations = list(product(*all_sentence_paraphrases))
|
|
|
134 |
|
135 |
formatted_output += "\nCombined paraphrased versions:\n"
|
136 |
combined_versions = []
|
|
|
146 |
label, score = classify_text(version)
|
147 |
formatted_output += f"Version {i}:\n{version}\n"
|
148 |
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
149 |
+
if label == "human-produced" or (label == "machine-generated" and score < 0.98):
|
150 |
human_versions.append((version, label, score))
|
151 |
|
152 |
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
|
|
|
177 |
fn=generate_paraphrases,
|
178 |
inputs=[
|
179 |
gr.Textbox(lines=5, label="Input Text"),
|
180 |
+
gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
|
181 |
gr.Radio(["text", "json"], label="Output Format")
|
182 |
],
|
183 |
outputs=[
|
|
|
185 |
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
|
186 |
],
|
187 |
title="Advanced Diverse Paraphraser with Human-like Filter",
|
188 |
+
description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
|
189 |
)
|
190 |
|
191 |
# Launch the interface
|