Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,51 @@
|
|
|
|
1 |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
|
5 |
-
# Use a valid model identifier.
|
6 |
-
# Replace "google/matcha-base" with your checkpoint if you have one.
|
7 |
model_name = "google/matcha-base"
|
8 |
|
9 |
# Load the pre-trained Pix2Struct model and processor
|
10 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
11 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
14 |
def solve_math_problem(image):
|
15 |
-
# Preprocess the image
|
|
|
16 |
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
|
|
|
|
|
17 |
|
18 |
-
# Generate the solution
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Decode the output
|
22 |
solution = processor.decode(predictions[0], skip_special_tokens=True)
|
23 |
return solution
|
24 |
|
25 |
-
# Gradio interface
|
26 |
demo = gr.Interface(
|
27 |
fn=solve_math_problem,
|
28 |
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
|
29 |
outputs=gr.Textbox(label="Solution"),
|
30 |
title="Handwritten Math Problem Solver",
|
31 |
-
description="Upload an image of a handwritten math problem
|
32 |
-
examples=[
|
33 |
-
["example1.jpg"], # Add example images if available
|
34 |
-
["example2.jpg"]
|
35 |
-
],
|
36 |
theme="soft"
|
37 |
)
|
38 |
|
|
|
1 |
+
import torch
|
2 |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Use a valid model identifier. Here we use "google/matcha-base".
|
|
|
7 |
model_name = "google/matcha-base"
|
8 |
|
9 |
# Load the pre-trained Pix2Struct model and processor
|
10 |
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
11 |
processor = Pix2StructProcessor.from_pretrained(model_name)
|
12 |
|
13 |
+
# Move model to GPU if available for faster inference
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
def solve_math_problem(image):
|
18 |
+
# Preprocess the image and include a clear prompt.
|
19 |
+
# You can adjust the prompt to better match your task if needed.
|
20 |
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
|
21 |
+
# Ensure the tensors are on the same device as the model
|
22 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
23 |
|
24 |
+
# Generate the solution using beam search.
|
25 |
+
# Adjust parameters for best performance:
|
26 |
+
# - max_new_tokens: Allows longer responses.
|
27 |
+
# - num_beams: Uses beam search to explore multiple hypotheses.
|
28 |
+
# - early_stopping: Stops decoding once a complete answer is generated.
|
29 |
+
# - temperature: Controls randomness (lower value = more deterministic).
|
30 |
+
predictions = model.generate(
|
31 |
+
**inputs,
|
32 |
+
max_new_tokens=150,
|
33 |
+
num_beams=5,
|
34 |
+
early_stopping=True,
|
35 |
+
temperature=0.5
|
36 |
+
)
|
37 |
|
38 |
+
# Decode the output to get a string answer, skipping any special tokens.
|
39 |
solution = processor.decode(predictions[0], skip_special_tokens=True)
|
40 |
return solution
|
41 |
|
42 |
+
# Set up a Gradio interface
|
43 |
demo = gr.Interface(
|
44 |
fn=solve_math_problem,
|
45 |
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
|
46 |
outputs=gr.Textbox(label="Solution"),
|
47 |
title="Handwritten Math Problem Solver",
|
48 |
+
description="Upload an image of a handwritten math problem and the model will attempt to solve it.",
|
|
|
|
|
|
|
|
|
49 |
theme="soft"
|
50 |
)
|
51 |
|