Nitin00043 commited on
Commit
c171c43
·
verified ·
1 Parent(s): aebafcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py CHANGED
@@ -1,50 +1,2 @@
1
- import torch
2
- from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
3
- import gradio as gr
4
- from PIL import Image
5
 
6
- # Use a valid model identifier. Here we use "google/matcha-base".
7
- model_name = "google/matcha-base"
8
-
9
- # Load the pre-trained Pix2Struct model and processor
10
- model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
11
- processor = Pix2StructProcessor.from_pretrained(model_name)
12
-
13
- # Move model to GPU if available and set to evaluation mode
14
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
- model.to(device)
16
- model.eval()
17
-
18
- def solve_math_problem(image):
19
- # Preprocess the image and include a prompt.
20
- inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
21
- # Move all tensors to the same device as the model
22
- inputs = {key: value.to(device) for key, value in inputs.items()}
23
-
24
- # Generate the solution using beam search within a no_grad context
25
- with torch.no_grad():
26
- predictions = model.generate(
27
- **inputs,
28
- max_new_tokens=150, # Increase this if longer answers are needed
29
- num_beams=5, # Beam search for more stable outputs
30
- early_stopping=True,
31
- temperature=0.5 # Lower temperature for more deterministic output
32
- )
33
-
34
- # Decode the generated tokens to a string, skipping special tokens
35
- solution = processor.decode(predictions[0], skip_special_tokens=True)
36
- return solution
37
-
38
- # Set up the Gradio interface
39
- demo = gr.Interface(
40
- fn=solve_math_problem,
41
- inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
42
- outputs=gr.Textbox(label="Solution"),
43
- title="Handwritten Math Problem Solver",
44
- description="Upload an image of a handwritten math problem and the model will attempt to solve it.",
45
- theme="soft"
46
- )
47
-
48
- if __name__ == "__main__":
49
- demo.launch()
50
 
 
 
 
 
 
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2