Nitin00043's picture
Create app.py
623c9e7 verified
raw
history blame
1.35 kB
from transformers import pipeline
import gradio as gr
# Load sentiment and emotion models
sentiment_model = "cardiffnlp/twitter-roberta-base-sentiment"
emotion_model = "bhadresh-savani/bert-base-uncased-emotion"
sentiment_pipeline = pipeline("sentiment-analysis", model=sentiment_model, tokenizer=sentiment_model)
emotion_pipeline = pipeline("text-classification", model=emotion_model, tokenizer=emotion_model)
# Function to analyze sentiment and emotion
def analyze_text(text):
sentiment_result = sentiment_pipeline(text)[0]
emotion_result = emotion_pipeline(text)[0]
return {
"Sentiment": {sentiment_result['label']: sentiment_result['score']},
"Emotion": {emotion_result['label']: emotion_result['score']}
}
# Gradio interface
demo = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
outputs=gr.Label(label="Analysis Results"),
title="Sentiment and Emotion Analysis",
description="Analyze the sentiment and emotion of your text using advanced NLP models.",
examples=[
["I'm thrilled to start this new adventure!"],
["This situation is making me really frustrated."],
["I feel so heartbroken and lost."]
],
theme="soft"
)
# Deploy the application
if __name__ == "__main__":
demo.launch()