Spaces:
Runtime error
Runtime error
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
import gradio as gr | |
import torch | |
from concurrent.futures import ThreadPoolExecutor | |
from threading import Lock | |
# Global cache and thread lock for thread-safe caching | |
CACHE_SIZE = 100 | |
prediction_cache = {} | |
cache_lock = Lock() | |
def load_model(model_name): | |
""" | |
Loads the model with 8-bit quantization if a GPU is available. | |
On CPU, it loads the full model. | |
""" | |
if torch.cuda.is_available(): | |
# Use 8-bit quantization and auto device mapping for GPU inference. | |
model = AutoModelForSequenceClassification.from_pretrained( | |
model_name, load_in_8bit=True, device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = 0 # GPU index | |
else: | |
# CPU fallback: do not use quantization. | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = -1 | |
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) | |
# Load both models concurrently atartup. | |
with ThreadPoolExecutor() as executor: | |
sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment") | |
emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion") | |
sentiment_pipeline = sentiment_future.result() | |
emotion_pipeline = emotion_future.result() | |
def analyze_text(text): | |
# Check cache first (thread-safe) | |
with cache_lock: | |
if text in prediction_cache: | |
return prediction_cache[text] | |
try: | |
# Run both model inferences in parallel. | |
with ThreadPoolExecutor() as executor: | |
future_sentiment = executor.submit(sentiment_pipeline, text) | |
future_emotion = executor.submit(emotion_pipeline, text) | |
sentiment_result = future_sentiment.result()[0] | |
emotion_result = future_emotion.result()[0] | |
# Format the output with rounded scores. | |
result = { | |
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)}, | |
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)} | |
} | |
except Exception as e: | |
result = {"error": str(e)} | |
# Update cache with protection. | |
with cache_lock: | |
if len(prediction_cache) >= CACHE_SIZE: | |
prediction_cache.pop(next(iter(prediction_cache))) | |
prediction_cache[text] = result | |
return result | |
# Define the Gradio interface. | |
demo = gr.Interface( | |
fn=analyze_text, | |
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"), | |
outputs=gr.JSON(label="Analysis Results"), | |
title="π Fast Sentiment & Emotion Analysis", | |
description="An optimized application using quantized models (when available) and parallel processing for fast inference.", | |
examples=[ | |
["I'm thrilled to start this new adventure!"], | |
["This situation is making me really frustrated."], | |
["I feel so heartbroken and lost."] | |
], | |
theme="soft", | |
allow_flagging="never" | |
) | |
# Warm up the models to reduce first-call latency. | |
_ = analyze_text("Warming up models...") | |
if __name__ == "__main__": | |
# In Spaces, binding to 0.0.0.0 is required. | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |