Nitin00043's picture
Update app.py
1ee9cdc verified
raw
history blame
3.41 kB
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import gradio as gr
import torch
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
# Global cache and thread lock for thread-safe caching
CACHE_SIZE = 100
prediction_cache = {}
cache_lock = Lock()
def load_model(model_name):
"""
Loads the model with 8-bit quantization if a GPU is available.
On CPU, it loads the full model.
"""
if torch.cuda.is_available():
# Use 8-bit quantization and auto device mapping for GPU inference.
model = AutoModelForSequenceClassification.from_pretrained(
model_name, load_in_8bit=True, device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = 0 # GPU index
else:
# CPU fallback: do not use quantization.
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = -1
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
# Load both models concurrently atartup.
with ThreadPoolExecutor() as executor:
sentiment_future = executor.submit(load_model, "cardiffnlp/twitter-roberta-base-sentiment")
emotion_future = executor.submit(load_model, "bhadresh-savani/bert-base-uncased-emotion")
sentiment_pipeline = sentiment_future.result()
emotion_pipeline = emotion_future.result()
def analyze_text(text):
# Check cache first (thread-safe)
with cache_lock:
if text in prediction_cache:
return prediction_cache[text]
try:
# Run both model inferences in parallel.
with ThreadPoolExecutor() as executor:
future_sentiment = executor.submit(sentiment_pipeline, text)
future_emotion = executor.submit(emotion_pipeline, text)
sentiment_result = future_sentiment.result()[0]
emotion_result = future_emotion.result()[0]
# Format the output with rounded scores.
result = {
"Sentiment": {sentiment_result['label']: round(sentiment_result['score'], 4)},
"Emotion": {emotion_result['label']: round(emotion_result['score'], 4)}
}
except Exception as e:
result = {"error": str(e)}
# Update cache with protection.
with cache_lock:
if len(prediction_cache) >= CACHE_SIZE:
prediction_cache.pop(next(iter(prediction_cache)))
prediction_cache[text] = result
return result
# Define the Gradio interface.
demo = gr.Interface(
fn=analyze_text,
inputs=gr.Textbox(placeholder="Enter your text here...", label="Input Text"),
outputs=gr.JSON(label="Analysis Results"),
title="πŸš€ Fast Sentiment & Emotion Analysis",
description="An optimized application using quantized models (when available) and parallel processing for fast inference.",
examples=[
["I'm thrilled to start this new adventure!"],
["This situation is making me really frustrated."],
["I feel so heartbroken and lost."]
],
theme="soft",
allow_flagging="never"
)
# Warm up the models to reduce first-call latency.
_ = analyze_text("Warming up models...")
if __name__ == "__main__":
# In Spaces, binding to 0.0.0.0 is required.
demo.launch(server_name="0.0.0.0", server_port=7860)