Spaces:
Running
Running
File size: 17,383 Bytes
62a9f0d eb91eca dc43c7f 1e79d96 45248e1 dc43c7f eb91eca 100847c dc43c7f b63e3fb eb91eca b63e3fb dc43c7f b63e3fb 62a9f0d 1e79d96 62a9f0d dc43c7f 62a9f0d dc43c7f 100847c 45248e1 dc43c7f eb91eca 45248e1 dc43c7f 45248e1 8ae26b9 dc43c7f 8ae26b9 dc43c7f 1e79d96 dc43c7f 45248e1 dc43c7f 1e79d96 dc43c7f 1e79d96 dc43c7f 8ae26b9 dc43c7f 100847c dc43c7f 100847c dc43c7f 100847c dc43c7f 100847c dc43c7f 45248e1 dc43c7f 7ddad4d dc43c7f 51aef25 7ddad4d dc43c7f 7ddad4d dc43c7f 45248e1 dc43c7f 45248e1 dc43c7f 1e79d96 dc43c7f eb91eca dc43c7f eb91eca dc43c7f 100847c eb91eca dc43c7f eb91eca dc43c7f eb91eca dc43c7f eb91eca dc43c7f b63e3fb dc43c7f b63e3fb dc43c7f 45248e1 dc43c7f eb91eca dc43c7f eb91eca dc43c7f 62a9f0d dc43c7f 4741d9a dc43c7f 62a9f0d 45248e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import gradio as gr
import os
import subprocess
import torch
from TTS.api import TTS
from deep_translator import GoogleTranslator
import pysrt
import whisper
import webvtt
import shutil
import time
from tqdm import tqdm
from typing import Dict, List, Optional
import logging
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Configuration
LANGUAGES = {
"English": {"code": "en", "speakers": ["default"], "whisper": "en"},
"Spanish": {"code": "es", "speakers": ["default"], "whisper": "es"},
"French": {"code": "fr", "speakers": ["default"], "whisper": "fr"},
"German": {"code": "de", "speakers": ["thorsten", "eva_k"], "whisper": "de"},
"Japanese": {"code": "ja", "speakers": ["default"], "whisper": "ja"},
"Hindi": {"code": "hi", "speakers": ["default"], "whisper": "hi"}
}
SUBTITLE_STYLES = {
"Default": "",
"White Text": "color: white;",
"Yellow Text": "color: yellow;",
"Large Text": "font-size: 24px;",
"Bold Text": "font-weight: bold;",
"Black Background": "background-color: black; padding: 5px;"
}
# Create output directory (relative path for Spaces)
OUTPUT_DIR = "outputs"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Initialize TTS with error handling
device = "cuda" if torch.cuda.is_available() else "cpu"
tts_models = {}
def load_tts_model(model_name: str, lang_code: str):
try:
tts = TTS(model_name).to(device)
# Try to use gruut phonemizer if espeak fails
if hasattr(tts.synthesizer, 'tts_config'):
tts.synthesizer.tts_config.phonemizer = "gruut"
return tts
except Exception as e:
logger.error(f"Failed to load {model_name}: {str(e)}")
return None
# Initialize models only when needed
def get_tts_model(lang_code: str):
if lang_code not in tts_models:
model_map = {
"en": "tts_models/en/ljspeech/tacotron2-DDC",
"es": "tts_models/es/css10/vits",
"fr": "tts_models/fr/css10/vits",
"de": "tts_models/de/thorsten/vits", # Using VITS instead of tacotron2
"ja": "tts_models/ja/kokoro/tacotron2-DDC",
"hi": "tts_models/hi/kb/tacotron2-DDC"
}
tts_models[lang_code] = load_tts_model(model_map[lang_code], lang_code)
return tts_models[lang_code]
# Initialize Whisper (load when needed)
whisper_model = None
def get_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("small")
return whisper_model
def extract_audio(video_path: str) -> str:
"""Extract audio using ffmpeg"""
audio_path = os.path.join(OUTPUT_DIR, "audio.wav")
cmd = [
'ffmpeg', '-i', video_path, '-vn',
'-acodec', 'pcm_s16le', '-ar', '16000',
'-ac', '1', '-y', audio_path
]
subprocess.run(cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return audio_path
def transcribe_with_whisper(audio_path: str, language: str = None) -> str:
"""Transcribe audio using Whisper"""
model = get_whisper_model()
result = model.transcribe(audio_path, language=language, word_timestamps=True)
return result
def generate_srt_from_whisper(audio_path: str, language: str) -> str:
"""Generate SRT subtitles from Whisper output"""
result = transcribe_with_whisper(audio_path, language)
subs = pysrt.SubRipFile()
for i, segment in enumerate(result["segments"]):
subs.append(pysrt.SubRipItem(
index=i+1,
start=pysrt.SubRipTime(seconds=segment["start"]),
end=pysrt.SubRipTime(seconds=segment["end"]),
text=segment["text"]
))
srt_path = os.path.join(OUTPUT_DIR, "subtitles.srt")
subs.save(srt_path, encoding='utf-8')
return srt_path
def detect_language(audio_path: str) -> str:
"""Detect language using Whisper"""
result = transcribe_with_whisper(audio_path)
detected_code = result["language"]
for name, data in LANGUAGES.items():
if data["whisper"] == detected_code:
return name
return "English"
def translate_subtitles(srt_path: str, target_langs: List[str]) -> Dict[str, str]:
"""Translate subtitles to multiple languages"""
subs = pysrt.open(srt_path)
results = {}
for lang_name in target_langs:
lang_code = LANGUAGES[lang_name]["code"]
translated_subs = subs[:]
translator = GoogleTranslator(source='auto', target=lang_code)
for sub in translated_subs:
try:
sub.text = translator.translate(sub.text)
except Exception as e:
logger.warning(f"Translation failed: {str(e)}")
continue
output_path = os.path.join(OUTPUT_DIR, f"subtitles_{lang_code}.srt")
translated_subs.save(output_path, encoding='utf-8')
results[lang_code] = output_path
return results
def generate_webvtt_subtitles(srt_path: str, style: str = "") -> str:
"""Convert SRT to WebVTT with optional styling"""
subs = pysrt.open(srt_path)
lang_code = os.path.basename(srt_path).split('_')[-1].replace('.srt', '')
vtt_path = os.path.join(OUTPUT_DIR, f"subtitles_{lang_code}.vtt")
with open(vtt_path, 'w', encoding='utf-8') as f:
f.write("WEBVTT\n\n")
if style:
f.write(f"STYLE\n::cue {{\n{style}\n}}\n\n")
for sub in subs:
start = sub.start.to_time().strftime('%H:%M:%S.%f')[:-3]
end = sub.end.to_time().strftime('%H:%M:%S.%f')[:-3]
f.write(f"{start} --> {end}\n")
f.write(f"{sub.text}\n\n")
return vtt_path
def generate_translated_audio(
srt_path: str,
target_lang: str,
speaker: str = "default"
) -> str:
"""Generate translated audio using TTS"""
subs = pysrt.open(srt_path)
temp_dir = os.path.join(OUTPUT_DIR, f"temp_audio_{target_lang}")
os.makedirs(temp_dir, exist_ok=True)
audio_files = []
timings = []
tts = get_tts_model(target_lang)
if tts is None:
raise Exception(f"TTS model for {target_lang} not available")
for i, sub in enumerate(tqdm(subs, desc=f"Generating {target_lang} audio")):
text = sub.text.strip()
if not text:
continue
start_time = sub.start.ordinal / 1000
audio_file = os.path.join(temp_dir, f"chunk_{i:04d}.wav")
try:
kwargs = {"speaker": speaker} if speaker != "default" and hasattr(tts, 'synthesizer') else {}
tts.tts_to_file(text=text, file_path=audio_file, **kwargs)
audio_files.append(audio_file)
timings.append((start_time, audio_file))
except Exception as e:
logger.warning(f"TTS failed: {str(e)}")
if not audio_files:
raise Exception("No audio generated")
# Create silent audio
video_duration = get_video_duration(os.path.join(OUTPUT_DIR, "base_video.mp4"))
silence_file = os.path.join(temp_dir, "silence.wav")
subprocess.run([
'ffmpeg', '-f', 'lavfi', '-i', 'anullsrc=r=44100:cl=stereo',
'-t', str(video_duration), '-y', silence_file
], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Mix audio
filter_complex = "[0:a]" + "".join(
f"[{i+1}:a]adelay={int(start*1000)}|{int(start*1000)}[a{i}];" +
f"[a{i-1 if i>0 else 'out'}]" + f"[a{i}]amix=inputs=2[aout]"
for i, (start, _) in enumerate(timings)
)
cmd = ['ffmpeg', '-y', '-i', silence_file] + \
[f'-i {f}' for f in audio_files] + [
'-filter_complex', filter_complex,
'-map', '[aout]',
os.path.join(OUTPUT_DIR, f"translated_audio_{target_lang}.wav")]
subprocess.run(' '.join(cmd), shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
shutil.rmtree(temp_dir)
return os.path.join(OUTPUT_DIR, f"translated_audio_{target_lang}.wav")
def get_video_duration(video_path: str) -> float:
"""Get video duration in seconds"""
result = subprocess.run([
'ffprobe', '-v', 'error', '-show_entries', 'format=duration',
'-of', 'default=noprint_wrappers=1:nokey=1', video_path
], capture_output=True, text=True)
return float(result.stdout.strip() or 180)
def create_html_player(
video_path: str,
subtitle_paths: Dict[str, str],
style: str = ""
) -> str:
"""Create HTML player with video and subtitles"""
html_path = os.path.join(OUTPUT_DIR, "player.html")
video_name = os.path.basename(video_path)
subtitle_tracks = "\n".join(
f'<track kind="subtitles" src="{os.path.basename(path)}" '
f'srclang="{lang}" label="{lang.capitalize()}" '
f'{"default" if lang == "en" else ""}>'
for lang, path in subtitle_paths.items()
)
style_block = f"video::cue {{ {style} }}" if style else ""
html_content = f"""<!DOCTYPE html>
<html>
<head>
<title>Video Player</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 20px; }}
.container {{ max-width: 800px; margin: 0 auto; }}
video {{ width: 100%; background: #000; }}
.downloads {{ margin-top: 20px; }}
{style_block}
</style>
</head>
<body>
<div class="container">
<h2>Video Player with Subtitles</h2>
<video controls>
<source src="{video_name}" type="video/mp4">
{subtitle_tracks}
</video>
<div class="downloads">
<h3>Download Subtitles:</h3>
{"".join(
f'<a href="{os.path.basename(path)}" download>'
f'{lang.upper()} Subtitles (.vtt)</a><br>'
for lang, path in subtitle_paths.items()
)}
</div>
</div>
</body>
</html>"""
with open(html_path, 'w', encoding='utf-8') as f:
f.write(html_content)
return html_path
def process_video(
video_file: str,
source_lang: str,
target_langs: List[str],
subtitle_style: str,
speaker_settings: Dict[str, str],
progress: gr.Progress = gr.Progress()
) -> List[str]:
"""Complete video processing pipeline"""
try:
progress(0.05, "Initializing...")
# 1. Extract audio
progress(0.1, "Extracting audio...")
audio_path = extract_audio(video_file)
# 2. Detect language if needed
if source_lang == "Auto-detect":
source_lang = detect_language(audio_path)
progress(0.15, f"Detected language: {source_lang}")
# 3. Generate subtitles
progress(0.2, "Generating subtitles...")
srt_path = generate_srt_from_whisper(
audio_path,
LANGUAGES[source_lang]["whisper"]
)
# 4. Translate subtitles
progress(0.3, "Translating subtitles...")
translated_subs = translate_subtitles(srt_path, target_langs)
# 5. Save original video
base_video = os.path.join(OUTPUT_DIR, "base_video.mp4")
shutil.copy(video_file, base_video)
# 6. Process each target language
translated_vtts = {}
for i, lang_name in enumerate(target_langs, 1):
lang_code = LANGUAGES[lang_name]["code"]
progress(0.4 + (i * 0.5 / len(target_langs)), f"Processing {lang_name}...")
# Generate audio
translated_audio = generate_translated_audio(
translated_subs[lang_code],
lang_code,
speaker_settings.get(lang_code, "default")
)
# Generate subtitles
vtt_path = generate_webvtt_subtitles(
translated_subs[lang_code],
SUBTITLE_STYLES.get(subtitle_style, "")
)
translated_vtts[lang_code] = vtt_path
# Create translated video version
output_video = os.path.join(OUTPUT_DIR, f"output_{lang_code}.mp4")
subprocess.run([
'ffmpeg', '-i', base_video, '-i', translated_audio,
'-map', '0:v', '-map', '1:a', '-c:v', 'copy', '-c:a', 'aac',
'-y', output_video
], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# 7. Create HTML player
progress(0.9, "Creating HTML player...")
html_path = create_html_player(
base_video,
translated_vtts,
SUBTITLE_STYLES.get(subtitle_style, "")
)
# Prepare all output files
output_files = [html_path, base_video] + \
list(translated_vtts.values()) + \
[os.path.join(OUTPUT_DIR, f"output_{LANGUAGES[lang]['code']}.mp4")
for lang in target_langs]
progress(1.0, "Done!")
return output_files, "Processing completed successfully!"
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
return None, f"Error: {str(e)}"
def get_speaker_settings(*args) -> Dict[str, str]:
"""Create speaker settings dictionary from inputs"""
settings = {}
for i, lang in enumerate(LANGUAGES.keys()):
if i < len(args) and args[i]:
settings[LANGUAGES[lang]["code"]] = args[i]
return settings
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(title="Video Translator") as demo:
gr.Markdown("# Free Video Translation System")
gr.Markdown("Translate videos with subtitles and audio dubbing using free/open-source tools")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload Video")
with gr.Accordion("Source Settings", open=True):
source_lang = gr.Dropdown(
label="Source Language",
choices=["Auto-detect"] + list(LANGUAGES.keys()),
value="Auto-detect"
)
with gr.Accordion("Target Languages", open=True):
target_langs = gr.CheckboxGroup(
label="Select target languages",
choices=list(LANGUAGES.keys()),
value=["English", "Spanish"]
)
with gr.Accordion("Subtitle Styling", open=False):
subtitle_style = gr.Dropdown(
label="Subtitle Appearance",
choices=list(SUBTITLE_STYLES.keys()),
value="Default"
)
with gr.Accordion("Voice Settings", open=False):
speaker_inputs = []
for lang_name in LANGUAGES.keys():
speakers = LANGUAGES[lang_name]["speakers"]
if len(speakers) > 1:
speaker_inputs.append(
gr.Dropdown(
label=f"{lang_name} Speaker",
choices=speakers,
value=speakers[0],
visible=False
)
)
else:
speaker_inputs.append(gr.Textbox(visible=False))
submit_btn = gr.Button("Translate Video", variant="primary")
with gr.Column(scale=2):
output_files = gr.Files(label="Download Files")
status = gr.Textbox(label="Status")
gr.Markdown("""
**Instructions:**
1. Upload a video file
2. Select source and target languages
3. Customize subtitles and voices
4. Click Translate
5. Download the HTML player and open in browser
""")
def update_speaker_ui(selected_langs):
updates = []
for i, lang_name in enumerate(LANGUAGES.keys()):
visible = lang_name in selected_langs and len(LANGUAGES[lang_name]["speakers"]) > 1
updates.append(gr.Dropdown.update(visible=visible))
return updates
target_langs.change(
update_speaker_ui,
inputs=target_langs,
outputs=speaker_inputs
)
submit_btn.click(
process_video,
inputs=[
video_input,
source_lang,
target_langs,
subtitle_style,
gr.State(lambda: get_speaker_settings(*speaker_inputs))
],
outputs=[output_files, status]
)
return demo
if __name__ == "__main__":
# Clear output directory on startup
if os.path.exists(OUTPUT_DIR):
shutil.rmtree(OUTPUT_DIR)
os.makedirs(OUTPUT_DIR, exist_ok=True)
demo = create_interface()
demo.launch(share=True) # Required for Hugging Face Spaces |