Nimzi's picture
Update app.py
86c53c2 verified
import streamlit as st
import requests
import torch
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import cv2
import numpy as np
from bs4 import BeautifulSoup
# Load Fake News Detection Models
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
sentiment_pipeline = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
ai_detector_pipeline = pipeline("text-classification", model="roberta-base-openai-detector")
def classify_text(news_text):
fake_news_result = fake_news_pipeline(news_text)[0]
sentiment_result = sentiment_pipeline(news_text)[0]
ai_result = ai_detector_pipeline(news_text)[0]
fake_label = fake_news_result['label'].lower()
sentiment_label = sentiment_result['label'].lower()
ai_label = ai_result['label'].lower()
fake_score = fake_news_result['score'] * 100
sentiment_score = sentiment_result['score'] * 100
ai_score = ai_result['score'] * 100
final_label = "Fake" if fake_label == "fake" or ai_label == "ai-generated" else "Real"
return final_label, round(fake_score, 2), round(sentiment_score, 2), round(ai_score, 2)
def analyze_image(image):
try:
analysis = DeepFace.analyze(image, actions=["emotion"])
dominant_emotion = analysis[0]["dominant_emotion"]
return "Fake" if dominant_emotion in ["fear", "surprise"] else "Real"
except Exception as e:
return "Error: " + str(e)
def analyze_video(video_path):
try:
cap = cv2.VideoCapture(video_path)
frame_count = 0
results = []
while cap.isOpened():
ret, frame = cap.read()
if not ret or frame_count >= 10:
break
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
result = analyze_image(image)
results.append(result)
frame_count += 1
cap.release()
return "Fake" if results.count("Fake") > results.count("Real") else "Real"
except Exception as e:
return "Error: " + str(e)
def verify_news(news_text):
search_url = f"https://www.google.com/search?q={'%20'.join(news_text.split())}"
sources = [
f"https://www.bbc.co.uk/search?q={'%20'.join(news_text.split())}",
f"https://www.cnn.com/search?q={'%20'.join(news_text.split())}",
f"https://www.reuters.com/search/news?blob={'%20'.join(news_text.split())}",
f"https://www.factcheck.org/?s={'%20'.join(news_text.split())}",
f"https://www.snopes.com/?s={'%20'.join(news_text.split())}",
f"https://www.politifact.com/search/?q={'%20'.join(news_text.split())}"
]
return search_url, sources
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("πŸ“° Fake News Detector")
col1, col2, col3 = st.columns(3)
with col1:
st.header("Text News Analysis")
news_text = st.text_area("Enter the news content to check:", height=200)
if st.button("Analyze News", key="text_analyze"):
if news_text.strip():
result, fake_acc, sentiment_acc, ai_acc = classify_text(news_text)
verification_link, sources = verify_news(news_text)
st.write(f"**Result:** {result}")
st.write(f"**Fake News Score:** {fake_acc}%")
st.write(f"**Sentiment Score:** {sentiment_acc}%")
st.write(f"**AI Detection Score:** {ai_acc}%")
st.markdown(f"[Verify on Google]({verification_link})")
for source in sources:
st.markdown(f"[Check Source]({source})")
else:
st.warning("Please enter some text.")
with col2:
st.header("Image News Analysis")
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
if uploaded_image and st.button("Analyze Image", key="image_analyze"):
image = Image.open(uploaded_image)
result = analyze_image(image)
st.image(image, caption="Uploaded Image", use_container_width=True)
st.write(f"**Result:** {result}")
verification_link, sources = verify_news("Fake news image verification")
st.markdown(f"[Verify on Google]({verification_link})")
for source in sources:
st.markdown(f"[Check Source]({source})")
with col3:
st.header("Video News Analysis")
video_url = st.text_input("Enter the video link:")
if st.button("Analyze Video", key="video_analyze"):
if video_url.strip():
result = analyze_video(video_url)
st.video(video_url)
st.write(f"**Result:** {result}")
verification_link, sources = verify_news("Fake news video verification")
st.markdown(f"[Verify on Google]({verification_link})")
for source in sources:
st.markdown(f"[Check Source]({source})")
else:
st.warning("Please enter a valid video link.")