Nikhitha2310 commited on
Commit
778129b
·
verified ·
1 Parent(s): c267917

Upload 3 files

Browse files
Files changed (3) hide show
  1. best 3.pt +3 -0
  2. requirements.txt +5 -0
  3. streamlit_app.py +53 -0
best 3.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ada8f21915461347ceaaa10b86f9b40ddef99ae2500217bf879405db1fb5c71
3
+ size 52137227
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ opencv-python-headless
3
+ numpy
4
+ pillow
5
+ ultralytics
streamlit_app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ import numpy as np
4
+ import tempfile
5
+ from PIL import Image
6
+ from ultralytics import YOLO
7
+
8
+ def process_lines(image_path):
9
+ thickness = 3
10
+
11
+ image = cv2.imread(image_path)
12
+ result = image.copy()
13
+
14
+ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
15
+
16
+ edges = cv2.Canny(gray, 50, 150, apertureSize=3)
17
+ lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=80, minLineLength=40, maxLineGap=40)
18
+ line_mask = np.zeros_like(gray)
19
+
20
+ if lines is not None:
21
+ for line in lines:
22
+ x1, y1, x2, y2 = line[0]
23
+ cv2.line(line_mask, (x1, y1), (x2, y2), (255, 255, 255), thickness=3)
24
+
25
+ return line_mask
26
+
27
+ def detect_text(image_path):
28
+ model = YOLO(r"C:\Users\Tectoro\OneDrive - Tectoro\Desktop\tippan\best 3.pt")
29
+ results = model.predict(image_path)
30
+ annotated_image = results[0].plot()
31
+ return annotated_image
32
+
33
+ st.title("Line and Text Extraction")
34
+ st.sidebar.header("Upload an Image")
35
+
36
+ uploaded_file = st.sidebar.file_uploader("Choose an image file", type=["png", "jpg", "jpeg", "tif"])
37
+
38
+ if st.sidebar.button("Process Image"):
39
+ if uploaded_file is not None:
40
+ with tempfile.NamedTemporaryFile(delete=False, suffix=uploaded_file.name) as temp_file:
41
+ temp_file.write(uploaded_file.read())
42
+ temp_file_path = temp_file.name
43
+
44
+ line_mask = process_lines(temp_file_path)
45
+ text_extracted=detect_text(temp_file_path)
46
+
47
+ st.subheader("Line Mask")
48
+ st.image(line_mask, channels="GRAY")
49
+
50
+ st.subheader("Text Detection")
51
+ st.image(cv2.cvtColor(text_extracted, cv2.COLOR_BGR2RGB))
52
+ else:
53
+ st.sidebar.error("Please upload an image file before clicking 'Process Image'.")