Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -28,11 +28,13 @@ def predict_clothing(images):
|
|
28 |
|
29 |
output_texts = []
|
30 |
for image in images:
|
|
|
31 |
inputs = processor(image, input_text, add_special_tokens=False, return_tensors="pt").to(model.device)
|
32 |
with torch.no_grad():
|
33 |
-
output = model.generate(**inputs, max_new_tokens=
|
34 |
output_texts.append(str(processor.decode(output[0])))
|
35 |
-
|
|
|
36 |
return output_texts
|
37 |
|
38 |
|
@@ -127,41 +129,32 @@ with gr.Blocks() as demo:
|
|
127 |
image_input_2 = gr.Image(label="Top-wear", type="filepath")
|
128 |
image_input_3 = gr.Image(label="Bottom-wear", type="filepath")
|
129 |
|
130 |
-
with gr.
|
131 |
-
|
132 |
-
|
133 |
-
label="
|
134 |
-
|
135 |
-
|
136 |
-
label="Width", minimum=128, maximum=
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
label="Inference Steps", minimum=1, maximum=100, value=50, step=1
|
145 |
-
)
|
146 |
|
147 |
-
|
148 |
-
label="
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
label="separate_cfg_infer", info="Whether to use separate inference process for different guidance. This will reduce the memory cost.", value=True,)
|
159 |
-
|
160 |
-
offload_model = gr.Checkbox(
|
161 |
-
label="offload_model", info="Offload model to CPU, which will significantly reduce the memory cost but slow down the generation speed. You can cancel separate_cfg_infer and set offload_model=True. If both separate_cfg_infer and offload_model are True, further reduce the memory, but slowest generation", value=False,)
|
162 |
-
|
163 |
-
use_input_image_size_as_output = gr.Checkbox(
|
164 |
-
label="use_input_image_size_as_output", info="Automatically adjust the output image size to be same as input image size. For editing and controlnet task, it can make sure the output image has the same size as input image leading to better performance", value=False,)
|
165 |
|
166 |
# generate
|
167 |
generate_button = gr.Button("Generate Image")
|
|
|
28 |
|
29 |
output_texts = []
|
30 |
for image in images:
|
31 |
+
print(type(image))
|
32 |
inputs = processor(image, input_text, add_special_tokens=False, return_tensors="pt").to(model.device)
|
33 |
with torch.no_grad():
|
34 |
+
output = model.generate(**inputs, max_new_tokens=32)
|
35 |
output_texts.append(str(processor.decode(output[0])))
|
36 |
+
|
37 |
+
print(output_texts)
|
38 |
return output_texts
|
39 |
|
40 |
|
|
|
129 |
image_input_2 = gr.Image(label="Top-wear", type="filepath")
|
130 |
image_input_3 = gr.Image(label="Bottom-wear", type="filepath")
|
131 |
|
132 |
+
with gr.Row(equal_height=True):
|
133 |
+
with gr.Column():
|
134 |
+
# sliders
|
135 |
+
max_input_image_size = gr.Slider(label="max_input_image_size", minimum=128, maximum=2048, value=1024, step=16)
|
136 |
+
|
137 |
+
height_input = gr.Slider(label="Height", minimum=128, maximum=1024, value=512, step=16)
|
138 |
+
width_input = gr.Slider(label="Width", minimum=128, maximum=1024, value=512, step=16)
|
139 |
+
|
140 |
+
# guidance_scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=5.0, value=2.5, step=0.1)
|
141 |
+
|
142 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=128, value=32, step=1)
|
143 |
+
|
144 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=2147483647, value=42, step=1)
|
145 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
146 |
|
147 |
+
with gr.Column():
|
148 |
+
img_guidance_scale_input = gr.Slider(label="img_guidance_scale", minimum=1.0, maximum=2.0, value=1.6, step=0.1)
|
149 |
+
|
150 |
+
separate_cfg_infer = gr.Checkbox(
|
151 |
+
label="separate_cfg_infer", info="Whether to use separate inference process for different guidance. This will reduce the memory cost.", value=True,)
|
152 |
+
|
153 |
+
offload_model = gr.Checkbox(
|
154 |
+
label="offload_model", info="Offload model to CPU, which will significantly reduce the memory cost but slow down the generation speed. You can cancel separate_cfg_infer and set offload_model=True. If both separate_cfg_infer and offload_model are True, further reduce the memory, but slowest generation", value=False,)
|
155 |
+
|
156 |
+
use_input_image_size_as_output = gr.Checkbox(
|
157 |
+
label="use_input_image_size_as_output", info="Automatically adjust the output image size to be same as input image size. For editing and controlnet task, it can make sure the output image has the same size as input image leading to better performance", value=False,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
# generate
|
160 |
generate_button = gr.Button("Generate Image")
|