NikhilJoson's picture
Update app.py
8e9eece verified
raw
history blame
14.9 kB
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image
import numpy as np
import os
import time
import re
from Upsample import RealESRGAN
import spaces # Import spaces for ZeroGPU compatibility
# Load model and processor
model_path = "deepseek-ai/Janus-Pro-7B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
if torch.cuda.is_available():
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
vl_gpt = vl_gpt.to(torch.float16)
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
# SR model
sr_model = RealESRGAN(torch.device('cuda' if torch.cuda.is_available() else 'cpu'), scale=2)
sr_model.load_weights(f'weights/RealESRGAN_x2.pth', download=False)
# Patterns for detecting image generation requests
GENERATION_PATTERNS = [
r"generate (.+)",
r"create (.+)",
r"draw (.+)",
r"make (.+)",
r"show (.+)",
r"visualize (.+)",
r"imagine (.+)",
r"picture (.+)",
]
def is_generation_request(message):
"""Determine if a message is requesting image generation"""
message = message.lower().strip()
# Check if message explicitly mentions image generation
for pattern in GENERATION_PATTERNS:
match = re.match(pattern, message, re.IGNORECASE)
if match:
return True, match.group(1)
# Check for specific keywords suggesting image generation
image_keywords = ["image", "picture", "photo", "artwork", "illustration", "painting", "drawing"]
generation_verbs = ["generate", "create", "make", "produce", "show me", "draw"]
for verb in generation_verbs:
for keyword in image_keywords:
if f"{verb} {keyword}" in message or f"{verb} an {keyword}" in message or f"{verb} a {keyword}" in message:
# Extract the prompt (everything after the keyword)
pattern = f"{verb}\\s+(?:an?\\s+)?{keyword}\\s+(?:of|showing|depicting|with)?\\s*(.*)"
match = re.search(pattern, message, re.IGNORECASE)
if match and match.group(1):
return True, match.group(1)
else:
# If we can't extract a specific prompt, use the whole message
return True, message
return False, None
@torch.inference_mode()
@spaces.GPU(duration=120)
# Unified chat function that handles both image understanding and generation
def unified_chat(image, message, chat_history, seed, top_p, temperature, cfg_weight, t2i_temperature, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# Check if this is an image generation request
is_gen_request, extracted_prompt = is_generation_request(message)
if is_gen_request:
# Prepare a more detailed prompt by considering context from the conversation
context_prompt = extracted_prompt
# Optionally, enhance the prompt with context from previous messages
if chat_history and len(chat_history) > 0:
# Get the last few turns of conversation for context (limit to last 3 turns)
recent_context = chat_history[-3:] if len(chat_history) > 3 else chat_history
context_text = " ".join([f"User: {user_msg}" for user_msg, _ in recent_context])
#context_text = " ".join([f"{user}: {user_msg}" for user_msg, _ in recent_context])
# Only use context if it's not too long
if len(context_text) < 200: # Arbitrary length limit
context_prompt = f"{context_text}. {extracted_prompt}"
# Generate images
generated_images = generate_image(prompt=context_prompt, seed=seed, guidance=cfg_weight, t2i_temperature=t2i_temperature)
# Create a response that includes the generated images
response = f"I've generated the following images based on: '{extracted_prompt}'"
# Add the images to the chat as the bot's response
chat_history.append((message, response))
# Return the message, updated history, maintained image context, and generated images
return "", chat_history, image, generated_images
# Regular chat flow (no image generation)
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
# Process the conversation history and add current message
conversation = []
# Check if we have existing history
if chat_history:
# Add previous conversation turns
for user_msg, assistant_msg in chat_history:
conversation.append({
"role": "<|User|>",
"content": user_msg,
"images": [], # No images for previous turns
})
conversation.append({
"role": "<|Assistant|>",
"content": assistant_msg,
})
# Add the current user message with image (if provided)
user_content = message
images_list = []
# Only include image placeholder if image is provided or this is the first message
if image is not None:
user_content = f"<image_placeholder>\n{message}"
images_list = [image]
conversation.append({
"role": "<|User|>",
"content": user_content,
"images": images_list,
})
conversation.append({"role": "<|Assistant|>", "content": ""})
# Process images (if any)
pil_images = []
if image is not None:
pil_images = [Image.fromarray(image)]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
# Update chat history
chat_history.append((message, answer))
# Keep the last uploaded image in context
return "", chat_history, image, None
def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5,
image_token_num_per_image: int = 576, patch_size: int = 16, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
with torch.no_grad():
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size])
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 1
with torch.no_grad():
messages = [{'role': '<|User|>', 'content': prompt},
{'role': '<|Assistant|>', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt='')
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
output, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance,
parallel_size=parallel_size, temperature=t2i_temperature)
images = unpack(patches, width // 16 * 16, height // 16 * 16, parallel_size=parallel_size)
stime = time.time()
ret_images = [image_upsample(Image.fromarray(images[i])) for i in range(parallel_size)]
print(f'upsample time: {time.time() - stime}')
return ret_images
@spaces.GPU(duration=60)
def image_upsample(img: Image.Image) -> Image.Image:
if img is None:
raise Exception("Image not uploaded")
width, height = img.size
if width >= 4096 or height >= 4096:
raise Exception("The image is too large.")
global sr_model
result = sr_model.predict(img.convert('RGB'))
return result
# Helper function to add uploaded image to the chat context
def add_image_to_chat(image, chat_history):
return image, chat_history
# Helper function to clear chat history but maintain the image
def clear_chat(image):
return [], image, None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Janus Pro 7B - Unified Chat Interface")
gr.Markdown("""
### Tips:
1. Upload an image to discuss it
2. Type commands like "generate [description]" to create images
3. Continue chatting about uploaded or generated images
4. Use natural language like "show me a sunset" or "create a portrait"
""")
# State variables to maintain context
chat_history = gr.State([])
current_image = gr.State(None)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image (optional)")
upload_button = gr.Button("Add Image to Chat")
with gr.Accordion("Chat Options", open=False):
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
with gr.Accordion("Image Generation Options", open=False):
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
t2i_temperature_input = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="Temperature")
clear_button = gr.Button("Clear Chat")
with gr.Column(scale=2):
chat_interface = gr.Chatbot(label="Chat History", height=500)
message_input = gr.Textbox(
label="Your message",
placeholder="Ask about an image, continue chatting, or generate new images by typing 'generate [description]'",
lines=2
)
chat_button = gr.Button("Send")
generated_images = gr.Gallery(label="Generated Images", visible=True, columns=2, rows=2)
# Chat interface interactions
upload_button.click(add_image_to_chat, inputs=[image_input, chat_history], outputs=[current_image, chat_history])
chat_button.click(
unified_chat,
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
outputs=[message_input, chat_interface, current_image, generated_images]
)
# Also trigger on Enter key
message_input.submit(
unified_chat,
inputs=[current_image, message_input, chat_interface, und_seed_input, top_p, temperature, cfg_weight_input, t2i_temperature_input],
outputs=[message_input, chat_interface, current_image, generated_images]
)
clear_button.click(
clear_chat,
inputs=[current_image],
outputs=[chat_interface, current_image, generated_images]
)
# Examples for the unified interface
examples = gr.Examples(
label="Example queries",
examples=[
["What's in this image?"],
["Generate a cute kitten with big eyes"],
["Show me a mountain landscape at sunset"],
["Can you explain what's happening in this picture?"],
["Create an astronaut riding a horse"],
["Generate a futuristic cityscape with flying cars"],
],
inputs=message_input,
)
demo.launch(share=True)