Spaces:
Configuration error
Configuration error
File size: 3,718 Bytes
600c297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from langchain.callbacks.base import BaseCallbackHandler
from pydantic import BaseModel
from typing import Any, Dict, List, Union
from langchain.schema import AgentAction, AgentFinish, LLMResult
class BaseMyCallbackHandler(BaseModel):
"""Base fake callback handler for testing."""
starts: int = 0
ends: int = 0
errors: int = 0
text: int = 0
ignore_llm_: bool = False
ignore_chain_: bool = False
ignore_agent_: bool = False
always_verbose_: bool = False
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
@property
def ignore_llm(self) -> bool:
"""Whether to ignore LLM callbacks."""
return self.ignore_llm_
@property
def ignore_chain(self) -> bool:
"""Whether to ignore chain callbacks."""
return self.ignore_chain_
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return self.ignore_agent_
# add finer-grained counters for easier debugging of failing tests
chain_starts: int = 0
chain_ends: int = 0
llm_starts: int = 0
llm_ends: int = 0
llm_streams: int = 0
tool_starts: int = 0
tool_ends: int = 0
agent_ends: int = 0
class MyCallbackHandler(BaseMyCallbackHandler, BaseCallbackHandler):
"""Fake callback handler for testing."""
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts running."""
self.llm_starts += 1
self.starts += 1
print(prompts[0])
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run when LLM generates a new token."""
self.llm_streams += 1
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
print(response)
self.llm_ends += 1
self.ends += 1
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.errors += 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Run when chain starts running."""
self.chain_starts += 1
self.starts += 1
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Run when chain ends running."""
self.chain_ends += 1
self.ends += 1
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when chain errors."""
self.errors += 1
def on_tool_start(
self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
) -> None:
"""Run when tool starts running."""
self.tool_starts += 1
self.starts += 1
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""Run when tool ends running."""
self.tool_ends += 1
self.ends += 1
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when tool errors."""
self.errors += 1
def on_text(self, text: str, **kwargs: Any) -> None:
"""Run when agent is ending."""
self.text += 1
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Run when agent ends running."""
self.agent_ends += 1
self.ends += 1
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Run on agent action."""
self.tool_starts += 1
self.starts += 1
|