Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from tqdm import tqdm
|
6 |
+
import gradio as gr
|
7 |
+
import ffmpeg
|
8 |
+
|
9 |
+
def extract_frames(video_path):
|
10 |
+
"""
|
11 |
+
Extracts all frames from the input video.
|
12 |
+
"""
|
13 |
+
cap = cv2.VideoCapture(video_path)
|
14 |
+
frames = []
|
15 |
+
while True:
|
16 |
+
ret, frame = cap.read()
|
17 |
+
if not ret:
|
18 |
+
break
|
19 |
+
frames.append(frame)
|
20 |
+
cap.release()
|
21 |
+
print(f"Extracted {len(frames)} frames from {video_path}")
|
22 |
+
return frames
|
23 |
+
|
24 |
+
def apply_style_propagation(frames, style_image_path,
|
25 |
+
enable_temporal_reset=True,
|
26 |
+
enable_median_filtering=True,
|
27 |
+
enable_patch_based=True,
|
28 |
+
enable_sharpening=True):
|
29 |
+
"""
|
30 |
+
Applies the style from the provided keyframe image to every frame using optical flow,
|
31 |
+
with additional corrections controlled by boolean flags:
|
32 |
+
- Temporal Reset/Re‑anchoring (if enabled)
|
33 |
+
- Median filtering of the flow (if enabled)
|
34 |
+
- Patch‑based correction for extreme flow (if enabled)
|
35 |
+
- Sharpening after warping (if enabled)
|
36 |
+
"""
|
37 |
+
# Load and resize the style image to match video dimensions.
|
38 |
+
style_image = cv2.imread(style_image_path)
|
39 |
+
if style_image is None:
|
40 |
+
raise ValueError(f"Failed to load style image from {style_image_path}")
|
41 |
+
h, w = frames[0].shape[:2]
|
42 |
+
style_image = cv2.resize(style_image, (w, h))
|
43 |
+
# Keep a copy for temporal re-anchoring.
|
44 |
+
original_styled = style_image.copy()
|
45 |
+
|
46 |
+
styled_frames = [style_image]
|
47 |
+
prev_gray = cv2.cvtColor(frames[0], cv2.COLOR_BGR2GRAY)
|
48 |
+
|
49 |
+
# Parameters for corrections:
|
50 |
+
reset_interval = 30 # Every 30 frames, blend with original style.
|
51 |
+
block_size = 16 # Size of block for patch matching.
|
52 |
+
patch_threshold = 10 # Threshold for mean flow magnitude in a block.
|
53 |
+
search_margin = 10 # Margin around block for patch matching.
|
54 |
+
|
55 |
+
for i in tqdm(range(1, len(frames)), desc="Propagating style"):
|
56 |
+
curr_gray = cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)
|
57 |
+
flow = cv2.calcOpticalFlowFarneback(
|
58 |
+
prev_gray, curr_gray, None,
|
59 |
+
pyr_scale=0.5, levels=3, winsize=15,
|
60 |
+
iterations=3, poly_n=5, poly_sigma=1.2, flags=0
|
61 |
+
)
|
62 |
+
|
63 |
+
# --- Method 3: Median Filtering of the Flow ---
|
64 |
+
if enable_median_filtering:
|
65 |
+
flow_x = flow[..., 0]
|
66 |
+
flow_y = flow[..., 1]
|
67 |
+
flow_x_filtered = cv2.medianBlur(flow_x, 3)
|
68 |
+
flow_y_filtered = cv2.medianBlur(flow_y, 3)
|
69 |
+
flow_filtered = np.dstack((flow_x_filtered, flow_y_filtered))
|
70 |
+
else:
|
71 |
+
flow_filtered = flow
|
72 |
+
|
73 |
+
# --- Method 4: Patch-based Correction for Extreme Flow ---
|
74 |
+
if enable_patch_based:
|
75 |
+
flow_corrected = flow_filtered.copy()
|
76 |
+
for by in range(0, h, block_size):
|
77 |
+
for bx in range(0, w, block_size):
|
78 |
+
# Define block region (handle edges)
|
79 |
+
y1, y2 = by, min(by + block_size, h)
|
80 |
+
x1, x2 = bx, min(bx + block_size, w)
|
81 |
+
block_flow = flow_filtered[y1:y2, x1:x2]
|
82 |
+
mag = np.sqrt(block_flow[..., 0]**2 + block_flow[..., 1]**2)
|
83 |
+
mean_mag = np.mean(mag)
|
84 |
+
if mean_mag > patch_threshold:
|
85 |
+
# Use patch matching to recalc flow for this block.
|
86 |
+
patch = prev_gray[y1:y2, x1:x2]
|
87 |
+
sx1 = max(x1 - search_margin, 0)
|
88 |
+
sy1 = max(by - search_margin, 0)
|
89 |
+
sx2 = min(x2 + search_margin, w)
|
90 |
+
sy2 = min(y2 + search_margin, h)
|
91 |
+
search_region = curr_gray[sy1:sy2, sx1:sx2]
|
92 |
+
if search_region.shape[0] < patch.shape[0] or search_region.shape[1] < patch.shape[1]:
|
93 |
+
continue
|
94 |
+
res = cv2.matchTemplate(search_region, patch, cv2.TM_SQDIFF_NORMED)
|
95 |
+
_, _, min_loc, _ = cv2.minMaxLoc(res)
|
96 |
+
best_x = sx1 + min_loc[0]
|
97 |
+
best_y = sy1 + min_loc[1]
|
98 |
+
offset_x = best_x - x1
|
99 |
+
offset_y = best_y - by
|
100 |
+
flow_corrected[y1:y2, x1:x2, 0] = offset_x
|
101 |
+
flow_corrected[y1:y2, x1:x2, 1] = offset_y
|
102 |
+
else:
|
103 |
+
flow_corrected = flow_filtered
|
104 |
+
|
105 |
+
# Compute mapping coordinates.
|
106 |
+
grid_x, grid_y = np.meshgrid(np.arange(w), np.arange(h))
|
107 |
+
map_x = grid_x + flow_corrected[..., 0]
|
108 |
+
map_y = grid_y + flow_corrected[..., 1]
|
109 |
+
map_x = np.clip(map_x, 0, w - 1).astype(np.float32)
|
110 |
+
map_y = np.clip(map_y, 0, h - 1).astype(np.float32)
|
111 |
+
|
112 |
+
# Warp the previous styled frame.
|
113 |
+
warped_styled = cv2.remap(styled_frames[-1], map_x, map_y, interpolation=cv2.INTER_LINEAR)
|
114 |
+
|
115 |
+
# --- Method 2: Temporal Reset/Re-anchoring ---
|
116 |
+
if enable_temporal_reset and (i % reset_interval == 0):
|
117 |
+
warped_styled = cv2.addWeighted(warped_styled, 0.7, original_styled, 0.3, 0)
|
118 |
+
|
119 |
+
# --- Method 5: Sharpening Post-Warping ---
|
120 |
+
if enable_sharpening:
|
121 |
+
kernel = np.array([[0, -1, 0],
|
122 |
+
[-1, 5, -1],
|
123 |
+
[0, -1, 0]], dtype=np.float32)
|
124 |
+
warped_styled = cv2.filter2D(warped_styled, -1, kernel)
|
125 |
+
|
126 |
+
styled_frames.append(warped_styled)
|
127 |
+
prev_gray = curr_gray
|
128 |
+
|
129 |
+
print(f"Propagated style to {len(styled_frames)} frames.")
|
130 |
+
sample_frame = styled_frames[len(styled_frames) // 2]
|
131 |
+
print(f"Sample styled frame mean intensity: {np.mean(sample_frame):.2f}")
|
132 |
+
return styled_frames
|
133 |
+
|
134 |
+
def save_video_cv2(frames, output_path, fps=30):
|
135 |
+
"""
|
136 |
+
Saves a list of frames as a video using OpenCV.
|
137 |
+
"""
|
138 |
+
h, w, _ = frames[0].shape
|
139 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
140 |
+
writer = cv2.VideoWriter(output_path, fourcc, fps, (w, h))
|
141 |
+
for frame in frames:
|
142 |
+
writer.write(frame)
|
143 |
+
writer.release()
|
144 |
+
size = os.path.getsize(output_path)
|
145 |
+
print(f"Intermediate video saved to {output_path} (size: {size} bytes)")
|
146 |
+
|
147 |
+
def process_video(video_file, style_image_file, fps=30, target_width=0, target_height=0,
|
148 |
+
enable_temporal_reset=True,
|
149 |
+
enable_median_filtering=True,
|
150 |
+
enable_patch_based=True,
|
151 |
+
enable_sharpening=True):
|
152 |
+
"""
|
153 |
+
Processes the input video by applying the style image via optical flow propagation,
|
154 |
+
with optional corrections (temporal reset, median filtering, patch-based correction, sharpening).
|
155 |
+
Optionally downscale the video and style image to the specified resolution.
|
156 |
+
Then re-encodes the video with FFmpeg for web compatibility.
|
157 |
+
|
158 |
+
Parameters:
|
159 |
+
- video_file: The input video file.
|
160 |
+
- style_image_file: The stylized keyframe image.
|
161 |
+
- fps: Output frames per second.
|
162 |
+
- target_width: Target width for downscaling (0 for original).
|
163 |
+
- target_height: Target height for downscaling (0 for original).
|
164 |
+
- enable_temporal_reset: Boolean flag for temporal reset.
|
165 |
+
- enable_median_filtering: Boolean flag for median filtering of flow.
|
166 |
+
- enable_patch_based: Boolean flag for patch-based correction.
|
167 |
+
- enable_sharpening: Boolean flag for sharpening post-warp.
|
168 |
+
|
169 |
+
Returns:
|
170 |
+
- Path to the final output video.
|
171 |
+
"""
|
172 |
+
# Get the video file path.
|
173 |
+
video_path = video_file if isinstance(video_file, str) else video_file["name"]
|
174 |
+
|
175 |
+
# Process the style image input.
|
176 |
+
if isinstance(style_image_file, str):
|
177 |
+
style_image_path = style_image_file
|
178 |
+
elif isinstance(style_image_file, dict) and "name" in style_image_file:
|
179 |
+
style_image_path = style_image_file["name"]
|
180 |
+
elif isinstance(style_image_file, np.ndarray):
|
181 |
+
tmp_style = os.path.join(tempfile.gettempdir(), "temp_style_image.jpeg")
|
182 |
+
cv2.imwrite(tmp_style, cv2.cvtColor(style_image_file, cv2.COLOR_RGB2BGR))
|
183 |
+
style_image_path = tmp_style
|
184 |
+
else:
|
185 |
+
return "Error: Unsupported style image format."
|
186 |
+
|
187 |
+
# Extract frames from the video.
|
188 |
+
frames = extract_frames(video_path)
|
189 |
+
if not frames:
|
190 |
+
return "Error: No frames extracted from the video."
|
191 |
+
|
192 |
+
original_h, original_w = frames[0].shape[:2]
|
193 |
+
print(f"Original video resolution: {original_w}x{original_h}")
|
194 |
+
|
195 |
+
# Downscale if target dimensions are provided.
|
196 |
+
if target_width > 0 and target_height > 0:
|
197 |
+
print(f"Downscaling frames to resolution: {target_width}x{target_height}")
|
198 |
+
frames = [cv2.resize(frame, (target_width, target_height)) for frame in frames]
|
199 |
+
else:
|
200 |
+
print("No downscaling applied. Using original resolution.")
|
201 |
+
|
202 |
+
# Propagate style with the selected corrections.
|
203 |
+
styled_frames = apply_style_propagation(frames, style_image_path,
|
204 |
+
enable_temporal_reset=enable_temporal_reset,
|
205 |
+
enable_median_filtering=enable_median_filtering,
|
206 |
+
enable_patch_based=enable_patch_based,
|
207 |
+
enable_sharpening=enable_sharpening)
|
208 |
+
|
209 |
+
# Save intermediate video using OpenCV to a named temporary file.
|
210 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
211 |
+
temp_video_file.close()
|
212 |
+
temp_video_path = temp_video_file.name
|
213 |
+
save_video_cv2(styled_frames, temp_video_path, fps=fps)
|
214 |
+
|
215 |
+
# Re-encode the video using FFmpeg for browser compatibility.
|
216 |
+
output_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
217 |
+
output_video_file.close()
|
218 |
+
output_video_path = output_video_file.name
|
219 |
+
|
220 |
+
try:
|
221 |
+
(
|
222 |
+
ffmpeg
|
223 |
+
.input(temp_video_path)
|
224 |
+
.output(output_video_path, vcodec='libx264', pix_fmt='yuv420p', r=fps)
|
225 |
+
.run(overwrite_output=True, quiet=True)
|
226 |
+
)
|
227 |
+
except ffmpeg.Error as e:
|
228 |
+
print("FFmpeg error:", e)
|
229 |
+
return "Error during video re-encoding."
|
230 |
+
|
231 |
+
final_size = os.path.getsize(output_video_path)
|
232 |
+
print(f"Output video saved to {output_video_path} (size: {final_size} bytes)")
|
233 |
+
if final_size == 0:
|
234 |
+
return "Error: Output video file is empty."
|
235 |
+
|
236 |
+
# Clean up the intermediate file.
|
237 |
+
os.remove(temp_video_path)
|
238 |
+
|
239 |
+
return output_video_path
|
240 |
+
|
241 |
+
iface = gr.Interface(
|
242 |
+
fn=process_video,
|
243 |
+
inputs=[
|
244 |
+
gr.Video(label="Input Video (v.mp4)"),
|
245 |
+
gr.Image(label="Stylized Keyframe (a.jpeg)"),
|
246 |
+
gr.Slider(minimum=1, maximum=60, step=1, value=30, label="Output FPS"),
|
247 |
+
gr.Slider(minimum=0, maximum=1920, step=1, value=0, label="Target Width (0 for original)"),
|
248 |
+
gr.Slider(minimum=0, maximum=1080, step=1, value=0, label="Target Height (0 for original)"),
|
249 |
+
gr.Checkbox(label="Enable Temporal Reset", value=True),
|
250 |
+
gr.Checkbox(label="Enable Median Filtering", value=True),
|
251 |
+
gr.Checkbox(label="Enable Patch-Based Correction", value=True),
|
252 |
+
gr.Checkbox(label="Enable Sharpening", value=True)
|
253 |
+
],
|
254 |
+
outputs=gr.Video(label="Styled Video"),
|
255 |
+
title="Optical Flow Style Propagation with Corrections",
|
256 |
+
description=(
|
257 |
+
"Upload a video and a stylized keyframe image. Optionally downscale to a target resolution.\n"
|
258 |
+
"You can enable/disable the following corrections:\n"
|
259 |
+
"• Temporal Reset/Re-anchoring\n"
|
260 |
+
"• Median Filtering of Flow\n"
|
261 |
+
"• Patch-Based Correction for Extreme Flow\n"
|
262 |
+
"• Sharpening Post-Warping\n"
|
263 |
+
"The output video is re-encoded for web compatibility."
|
264 |
+
)
|
265 |
+
)
|
266 |
+
|
267 |
+
if __name__ == "__main__":
|
268 |
+
iface.launch(share=True)
|