NightRaven109's picture
Update app.py
07f4a39 verified
raw
history blame contribute delete
11 kB
import os
import torch
import gradio as gr
import spaces
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import snapshot_download
from test_ccsr_tile import load_pipeline
import argparse
from accelerate import Accelerator
# Global variables
class ModelContainer:
def __init__(self):
self.pipeline = None
self.generator = None
self.accelerator = None
self.is_initialized = False
model_container = ModelContainer()
class Args:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
@spaces.GPU
def initialize_models():
"""Initialize models only if they haven't been initialized yet"""
if model_container.is_initialized:
return True
try:
# Download model repository (only once)
model_path = snapshot_download(
repo_id="NightRaven109/CCSRModels",
token=os.environ['Read2']
)
# Set up default arguments
args = Args(
pretrained_model_path=os.path.join(model_path, "stable-diffusion-2-1-base"),
controlnet_model_path=os.path.join(model_path, "Controlnet"),
vae_model_path=os.path.join(model_path, "vae"),
mixed_precision="fp16",
tile_vae=False,
sample_method="ddpm",
vae_encoder_tile_size=1024,
vae_decoder_tile_size=224
)
# Initialize accelerator
model_container.accelerator = Accelerator(
mixed_precision=args.mixed_precision,
)
# Load pipeline
model_container.pipeline = load_pipeline(args, model_container.accelerator,
enable_xformers_memory_efficient_attention=False)
# Set models to eval mode
model_container.pipeline.unet.eval()
model_container.pipeline.controlnet.eval()
model_container.pipeline.vae.eval()
model_container.pipeline.text_encoder.eval()
# Move pipeline to CUDA and set to eval mode once
model_container.pipeline = model_container.pipeline.to("cuda")
# Initialize generator
model_container.generator = torch.Generator("cuda")
# Set initialization flag
model_container.is_initialized = True
return True
except Exception as e:
print(f"Error initializing models: {str(e)}")
return False
@torch.no_grad() # Add no_grad decorator for inference
@spaces.GPU
def process_image(
input_image,
prompt="clean, texture, high-resolution, 8k",
negative_prompt="blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
guidance_scale=2.5,
conditioning_scale=1.0,
num_inference_steps=6,
seed=None,
upscale_factor=4,
color_fix_method="adain"
):
# Initialize models if not already done
if not model_container.is_initialized:
if not initialize_models():
return None
try:
# Create args object
args = Args(
added_prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
conditioning_scale=conditioning_scale,
num_inference_steps=num_inference_steps,
seed=seed,
upscale=upscale_factor,
process_size=512,
align_method=color_fix_method,
t_max=0.6666,
t_min=0.0,
tile_diffusion=False,
tile_diffusion_size=None,
tile_diffusion_stride=None,
start_steps=999,
start_point='lr',
use_vae_encode_condition=True,
sample_times=1
)
# Set seed if provided
if seed is not None:
model_container.generator.manual_seed(seed)
# Process input image
validation_image = Image.fromarray(input_image)
ori_width, ori_height = validation_image.size
# Resize logic
resize_flag = False
if ori_width < args.process_size//args.upscale or ori_height < args.process_size//args.upscale:
scale = (args.process_size//args.upscale)/min(ori_width, ori_height)
validation_image = validation_image.resize((round(scale*ori_width), round(scale*ori_height)))
resize_flag = True
validation_image = validation_image.resize((validation_image.size[0]*args.upscale, validation_image.size[1]*args.upscale))
validation_image = validation_image.resize((validation_image.size[0]//8*8, validation_image.size[1]//8*8))
width, height = validation_image.size
# Generate image
inference_time, output = model_container.pipeline(
args.t_max,
args.t_min,
args.tile_diffusion,
args.tile_diffusion_size,
args.tile_diffusion_stride,
args.added_prompt,
validation_image,
num_inference_steps=args.num_inference_steps,
generator=model_container.generator,
height=height,
width=width,
guidance_scale=args.guidance_scale,
negative_prompt=args.negative_prompt,
conditioning_scale=args.conditioning_scale,
start_steps=args.start_steps,
start_point=args.start_point,
use_vae_encode_condition=True,
)
image = output.images[0]
# Apply color fixing if specified
if args.align_method != "none":
from myutils.wavelet_color_fix import wavelet_color_fix, adain_color_fix
fix_func = wavelet_color_fix if args.align_method == "wavelet" else adain_color_fix
image = fix_func(image, validation_image)
if resize_flag:
image = image.resize((ori_width*args.upscale, ori_height*args.upscale))
return image
except Exception as e:
print(f"Error processing image: {str(e)}")
import traceback
traceback.print_exc()
return None
# Define default values
DEFAULT_VALUES = {
"prompt": "clean, texture, high-resolution, 8k",
"negative_prompt": "blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
"guidance_scale": 3,
"conditioning_scale": 1.0,
"num_steps": 6,
"seed": None,
"upscale_factor": 4,
"color_fix_method": "adain"
}
# Define example data
EXAMPLES = [
[
"examples/1.png", # Input image path
"clean, texture, high-resolution, 8k", # Prompt
"blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed", # Negative prompt
3.0, # Guidance scale
1.0, # Conditioning scale
6, # Num steps
42, # Seed
4, # Upscale factor
"wavelet" # Color fix method
],
[
"examples/22.png",
"clean, texture, high-resolution, 8k",
"blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
3.0,
1.0,
6,
123,
4,
"wavelet"
],
[
"examples/4.png",
"clean, texture, high-resolution, 8k",
"blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
3.0,
1.0,
6,
123,
4,
"wavelet"
],
[
"examples/9D03D7F206775949.png",
"clean, texture, high-resolution, 8k",
"blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
3.0,
1.0,
6,
123,
4,
"wavelet"
],
[
"examples/3.jpeg",
"clean, texture, high-resolution, 8k",
"blurry, dotted, noise, raster lines, unclear, lowres, over-smoothed",
2.5,
1.0,
6,
456,
4,
"wavelet"
]
]
# Create interface components
with gr.Blocks(title="Texture Super-Resolution") as demo:
gr.Markdown("## Texture Super-Resolution")
gr.Markdown("Upload a texture to enhance its resolution.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image")
with gr.Accordion("Advanced Options", open=False):
prompt = gr.Textbox(label="Prompt", value=DEFAULT_VALUES["prompt"])
negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_VALUES["negative_prompt"])
guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=DEFAULT_VALUES["guidance_scale"], label="Guidance Scale")
conditioning_scale = gr.Slider(minimum=0.1, maximum=2.0, value=DEFAULT_VALUES["conditioning_scale"], label="Conditioning Scale")
num_steps = gr.Slider(minimum=1, maximum=50, value=DEFAULT_VALUES["num_steps"], step=1, label="Number of Steps")
seed = gr.Number(label="Seed", value=DEFAULT_VALUES["seed"])
upscale_factor = gr.Slider(minimum=1, maximum=8, value=DEFAULT_VALUES["upscale_factor"], step=1, label="Upscale Factor")
color_fix_method = gr.Dropdown(
choices=["none", "wavelet", "adain"],
label="Color Fix Method",
value=DEFAULT_VALUES["color_fix_method"]
)
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil", format="png")
# Add examples
gr.Examples(
examples=EXAMPLES,
inputs=[
input_image, prompt, negative_prompt, guidance_scale,
conditioning_scale, num_steps, seed, upscale_factor,
color_fix_method
],
outputs=output_image,
fn=process_image,
cache_examples=True # Cache the results for faster loading
)
# Define submit action
submit_btn.click(
fn=process_image,
inputs=[
input_image, prompt, negative_prompt, guidance_scale,
conditioning_scale, num_steps, seed, upscale_factor,
color_fix_method
],
outputs=output_image
)
# Define clear action that resets to default values
def reset_to_defaults():
return [
None, # input_image
DEFAULT_VALUES["prompt"],
DEFAULT_VALUES["negative_prompt"],
DEFAULT_VALUES["guidance_scale"],
DEFAULT_VALUES["conditioning_scale"],
DEFAULT_VALUES["num_steps"],
DEFAULT_VALUES["seed"],
DEFAULT_VALUES["upscale_factor"],
DEFAULT_VALUES["color_fix_method"]
]
clear_btn.click(
fn=reset_to_defaults,
inputs=None,
outputs=[
input_image, prompt, negative_prompt, guidance_scale,
conditioning_scale, num_steps, seed, upscale_factor,
color_fix_method
]
)
if __name__ == "__main__":
demo.launch()