nextdrought / pages /14_πŸ“ˆ_Table_Data_Visualization.py
Peter Yang
back to visualization
8015fc4
raw
history blame contribute delete
983 Bytes
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import io
import base64
st.set_page_config(layout="wide")
# Function for the CSV Visualization App
def app():
st.title('CSV Data Cleaning and Visualization')
uploaded_file = st.file_uploader("Upload your input CSV file", type=["csv"])
# Pandas DataFrame is created from the CSV file
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
st.write(df) # Display the dataframe on the app
# Create a selectbox for user to choose the column to visualize
columns = df.columns.tolist()
selected_column = st.selectbox('Select a column to visualize', columns)
# Using seaborn to create a count plot
fig, ax = plt.subplots()
sns.countplot(data=df, x=selected_column, ax=ax)
plt.xticks(rotation=45) # Rotate X-axis labels to 45 degrees
# Show the plot
st.pyplot(fig)
app()