Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,418 +1,71 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
-
import time
|
6 |
-
import logging
|
7 |
-
import subprocess
|
8 |
-
import sys
|
9 |
|
10 |
-
# 設定
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
st.write(f"{package} 已安裝成功")
|
42 |
-
except Exception as e:
|
43 |
-
st.error(f"安裝 {package} 失敗: {str(e)}")
|
44 |
-
return False
|
45 |
-
return True
|
46 |
-
|
47 |
-
# 安裝缺失的套件
|
48 |
-
if not install_missing_packages():
|
49 |
-
st.error("必要套件安裝失敗,請刷新頁面重試")
|
50 |
-
st.stop()
|
51 |
-
|
52 |
-
st.write("正在導入依賴項...")
|
53 |
-
|
54 |
-
# 依次導入並檢查每個依賴
|
55 |
-
try:
|
56 |
-
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
57 |
-
st.write("成功導入 HuggingFaceEmbeddings")
|
58 |
-
except Exception as e:
|
59 |
-
st.error(f"導入 HuggingFaceEmbeddings 失敗: {str(e)}")
|
60 |
-
st.stop()
|
61 |
-
|
62 |
-
try:
|
63 |
-
from langchain_community.vectorstores import FAISS
|
64 |
-
st.write("成功導入 FAISS")
|
65 |
-
except Exception as e:
|
66 |
-
st.error(f"導入 FAISS 失敗: {str(e)}")
|
67 |
-
st.stop()
|
68 |
-
|
69 |
-
try:
|
70 |
-
from langchain_community.llms import HuggingFacePipeline
|
71 |
-
st.write("成功導入 HuggingFacePipeline")
|
72 |
-
except Exception as e:
|
73 |
-
st.error(f"導入 HuggingFacePipeline 失敗: {str(e)}")
|
74 |
-
st.stop()
|
75 |
-
|
76 |
-
try:
|
77 |
-
from langchain.chains import RetrievalQA, LLMChain
|
78 |
-
st.write("成功導入 RetrievalQA, LLMChain")
|
79 |
-
except Exception as e:
|
80 |
-
st.error(f"導入 RetrievalQA, LLMChain 失敗: {str(e)}")
|
81 |
-
st.stop()
|
82 |
-
|
83 |
-
try:
|
84 |
-
from langchain.prompts import PromptTemplate
|
85 |
-
st.write("成功導入 PromptTemplate")
|
86 |
-
except Exception as e:
|
87 |
-
st.error(f"導入 PromptTemplate 失敗: {str(e)}")
|
88 |
-
st.stop()
|
89 |
-
|
90 |
-
try:
|
91 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
92 |
-
st.write("成功導入 transformers 組件")
|
93 |
-
except Exception as e:
|
94 |
-
st.error(f"導入 transformers 組件失敗: {str(e)}")
|
95 |
-
st.stop()
|
96 |
-
|
97 |
-
st.write("所有依賴項導入成功!")
|
98 |
-
|
99 |
-
# 側邊欄設定
|
100 |
-
with st.sidebar:
|
101 |
-
st.header("參數設定")
|
102 |
-
|
103 |
-
model_option = st.selectbox(
|
104 |
-
"選擇模型",
|
105 |
-
["THUDM/chatglm3-6b", "THUDM/chatglm2-6b", "THUDM/chatglm-6b"],
|
106 |
-
index=0
|
107 |
-
)
|
108 |
-
|
109 |
-
embedding_option = st.selectbox(
|
110 |
-
"選擇嵌入模型",
|
111 |
-
["shibing624/text2vec-base-chinese", "GanymedeNil/text2vec-large-chinese"],
|
112 |
-
index=0
|
113 |
-
)
|
114 |
-
|
115 |
-
mode = st.radio(
|
116 |
-
"回答模式",
|
117 |
-
["混合模式(優先使用上傳資料)", "僅使用上傳資料", "僅使用模型知識"]
|
118 |
)
|
119 |
-
|
120 |
-
max_tokens = st.slider("最大回應長度", 128, 2048, 512)
|
121 |
-
temperature = st.slider("溫度(創造性)", 0.0, 1.0, 0.7, 0.1)
|
122 |
-
top_k = st.slider("檢索相關文檔數", 1, 5, 3)
|
123 |
-
|
124 |
-
st.markdown("---")
|
125 |
-
st.markdown("### 關於")
|
126 |
-
st.markdown("此應用使用 ChatGLM 模型結合 LangChain 框架,將您的 Excel 數據轉化為智能問答系統。同時支持一般知識問答。")
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
st.write(f"嵌入模型加載成功!")
|
136 |
-
return embeddings
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"嵌入模型加載失敗: {str(e)}")
|
139 |
-
st.error(f"嵌入模型加載失敗: {str(e)}")
|
140 |
-
return None
|
141 |
-
|
142 |
-
@st.cache_resource
|
143 |
-
def load_llm(_model_name, _max_tokens, _temperature):
|
144 |
-
try:
|
145 |
-
logger.info(f"加載語言模型: {_model_name}")
|
146 |
-
st.write(f"開始加載語言模型: {_model_name}...")
|
147 |
-
|
148 |
-
# 檢查可用資源
|
149 |
-
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated() if torch.cuda.is_available() else 0
|
150 |
-
st.write(f"可用GPU記憶體: {free_memory / (1024**3):.2f} GB" if torch.cuda.is_available() else "無GPU可用,將使用CPU")
|
151 |
-
|
152 |
-
# 檢查是否有GPU可用,但添加更多選項和提示
|
153 |
-
if torch.cuda.is_available() and free_memory > 8 * (1024**3): # 如果有超過8GB可用
|
154 |
-
device = "cuda"
|
155 |
-
dtype = torch.float16
|
156 |
-
st.write("使用GPU (CUDA) 加載模型,使用半精度 (float16)")
|
157 |
-
else:
|
158 |
-
device = "cpu"
|
159 |
-
dtype = torch.float32
|
160 |
-
st.write("使用CPU加載模型,這可能會很慢且需要大量記憶體")
|
161 |
-
|
162 |
-
# 使用超時保護
|
163 |
-
with st.spinner(f"正在加載 {_model_name} 模型,這可能需要幾分鐘..."):
|
164 |
-
# 加載tokenizer
|
165 |
-
st.write("加載tokenizer...")
|
166 |
-
tokenizer = AutoTokenizer.from_pretrained(_model_name, trust_remote_code=True)
|
167 |
-
st.write("Tokenizer加載成功")
|
168 |
-
|
169 |
-
# 加載模型
|
170 |
-
st.write(f"開始加載模型到{device}...")
|
171 |
-
model = AutoModelForCausalLM.from_pretrained(
|
172 |
-
_model_name,
|
173 |
-
trust_remote_code=True,
|
174 |
-
device_map=device,
|
175 |
-
torch_dtype=dtype
|
176 |
-
)
|
177 |
-
st.write("模型加載成功!")
|
178 |
-
|
179 |
-
# 創建pipeline
|
180 |
-
st.write("創建文本生成pipeline...")
|
181 |
-
pipe = pipeline(
|
182 |
-
"text-generation",
|
183 |
-
model=model,
|
184 |
-
tokenizer=tokenizer,
|
185 |
-
max_new_tokens=_max_tokens,
|
186 |
-
temperature=_temperature,
|
187 |
-
top_p=0.9,
|
188 |
-
repetition_penalty=1.1
|
189 |
-
)
|
190 |
-
st.write("Pipeline創建成功!")
|
191 |
-
|
192 |
-
return HuggingFacePipeline(pipeline=pipe)
|
193 |
-
except Exception as e:
|
194 |
-
logger.error(f"語言模型加載失敗: {str(e)}")
|
195 |
-
st.error(f"語言模型加載失敗: {str(e)}")
|
196 |
-
st.error("如果是因為記憶體不足,請考慮使用較小的模型或增加系統記憶體")
|
197 |
-
return None
|
198 |
-
|
199 |
-
# 創建向量資料庫
|
200 |
-
def create_vectorstore(texts, embeddings):
|
201 |
-
try:
|
202 |
-
st.write("開始創建向量資料庫...")
|
203 |
-
vectorstore = FAISS.from_texts(texts, embedding=embeddings)
|
204 |
-
st.write("向量資料庫創建成功!")
|
205 |
-
return vectorstore
|
206 |
-
except Exception as e:
|
207 |
-
logger.error(f"向量資料庫創建失敗: {str(e)}")
|
208 |
-
st.error(f"向量資料庫創建失敗: {str(e)}")
|
209 |
-
return None
|
210 |
-
|
211 |
-
# 創建直接問答的LLM鏈
|
212 |
-
def create_general_qa_chain(llm):
|
213 |
-
prompt_template = """請回答以下問題:
|
214 |
-
|
215 |
-
問題: {question}
|
216 |
-
|
217 |
-
請提供詳細且有幫助的回答:"""
|
218 |
-
|
219 |
-
prompt = PromptTemplate(
|
220 |
-
template=prompt_template,
|
221 |
-
input_variables=["question"]
|
222 |
)
|
223 |
-
|
224 |
-
return LLMChain(llm=llm, prompt=prompt)
|
225 |
-
|
226 |
-
# 混合模式問答處理
|
227 |
-
def hybrid_qa(query, qa_chain, general_chain, confidence_threshold=0.7):
|
228 |
-
# 先嘗試使用知識庫回答
|
229 |
-
try:
|
230 |
-
st.write("嘗試從知識庫查詢答案...")
|
231 |
-
kb_result = qa_chain({"query": query})
|
232 |
-
# 檢查向量存儲的相似度分數,判斷是否有足夠相關的內容
|
233 |
-
if (hasattr(kb_result, 'source_documents') and
|
234 |
-
kb_result.get("source_documents") and
|
235 |
-
len(kb_result["source_documents"]) > 0):
|
236 |
-
# 這裡假設我們能獲取到相似度分數,實際上可能需要根據您使用的向量存儲方法調整
|
237 |
-
relevance = True # 在實際應用中,這裡應根據相似度分數確定
|
238 |
-
|
239 |
-
if relevance:
|
240 |
-
st.write("找到相關知識庫內容")
|
241 |
-
return kb_result, "knowledge_base", kb_result["source_documents"]
|
242 |
-
st.write("知識庫中未找到足夠相關的內容")
|
243 |
-
except Exception as e:
|
244 |
-
logger.warning(f"知識庫查詢失敗: {str(e)}")
|
245 |
-
st.warning(f"知識庫查詢失敗: {str(e)}")
|
246 |
-
|
247 |
-
# 如果知識庫沒有足夠相關的答案,使用一般知識模式
|
248 |
-
try:
|
249 |
-
st.write("使用模型一般知識回答...")
|
250 |
-
general_result = general_chain.run(question=query)
|
251 |
-
return {"result": general_result}, "general", []
|
252 |
-
except Exception as e:
|
253 |
-
logger.error(f"一般知識查詢失敗: {str(e)}")
|
254 |
-
st.error(f"一般知識查詢失敗: {str(e)}")
|
255 |
-
return {"result": "很抱歉,無法處理您的問題,請稍後再試。"}, "error", []
|
256 |
-
|
257 |
-
# 主應用邏輯
|
258 |
-
# 加載嵌入模型(先加載嵌入模型,因為這通常較小較快)
|
259 |
-
embeddings = None
|
260 |
-
if "embeddings" not in st.session_state:
|
261 |
-
with st.spinner("正在加載嵌入模型..."):
|
262 |
-
embeddings = load_embeddings(embedding_option)
|
263 |
-
if embeddings is not None:
|
264 |
-
st.session_state.embeddings = embeddings
|
265 |
-
else:
|
266 |
-
st.error("嵌入模型加載失敗,請刷新頁面重試")
|
267 |
-
st.stop()
|
268 |
-
else:
|
269 |
-
embeddings = st.session_state.embeddings
|
270 |
-
|
271 |
-
# 加載語言模型(不管是否上傳文件都需要)
|
272 |
-
llm = None
|
273 |
-
if "llm" not in st.session_state:
|
274 |
-
llm = load_llm(model_option, max_tokens, temperature)
|
275 |
-
if llm is not None:
|
276 |
-
st.session_state.llm = llm
|
277 |
-
else:
|
278 |
-
st.error("語言模型加載失敗,請刷新頁面重試")
|
279 |
-
st.stop()
|
280 |
-
else:
|
281 |
-
llm = st.session_state.llm
|
282 |
-
|
283 |
-
# 創建一般問答鏈
|
284 |
-
general_qa_chain = create_general_qa_chain(llm)
|
285 |
-
st.write("一般問答鏈創建成功!")
|
286 |
-
|
287 |
-
# 變數初始化
|
288 |
-
kb_qa_chain = None
|
289 |
-
has_knowledge_base = False
|
290 |
-
vectorstore = None
|
291 |
-
|
292 |
-
# 上傳Excel文件
|
293 |
-
uploaded_file = st.file_uploader("上傳你的問答 Excel(可選)", type=["xlsx"])
|
294 |
-
|
295 |
-
if uploaded_file:
|
296 |
-
# 讀取Excel文件
|
297 |
-
try:
|
298 |
-
st.write("開始讀取Excel文件...")
|
299 |
-
df = pd.read_excel(uploaded_file)
|
300 |
-
|
301 |
-
# 檢查必要欄位
|
302 |
-
if not {'問題', '答案'}.issubset(df.columns):
|
303 |
-
st.error("Excel 檔案需包含 '問題' 和 '答案' 欄位")
|
304 |
-
else:
|
305 |
-
# 顯示資料預覽
|
306 |
-
with st.expander("Excel 資料預覽"):
|
307 |
-
st.dataframe(df.head())
|
308 |
-
|
309 |
-
st.info(f"成功讀取 {len(df)} 筆問答對")
|
310 |
-
|
311 |
-
# 建立文本列表
|
312 |
-
texts = [f"問題:{q}\n答案:{a}" for q, a in zip(df['問題'], df['答案'])]
|
313 |
-
|
314 |
-
# 進度條
|
315 |
-
progress_text = "正在處理中..."
|
316 |
-
my_bar = st.progress(0, text=progress_text)
|
317 |
-
|
318 |
-
# 使用之前加載的嵌入模型
|
319 |
-
my_bar.progress(25, text="準備嵌入模型...")
|
320 |
-
|
321 |
-
# 建立向量資料庫
|
322 |
-
my_bar.progress(50, text="正在建立向量資料庫...")
|
323 |
-
vectorstore = create_vectorstore(texts, embeddings)
|
324 |
-
if vectorstore is None:
|
325 |
-
st.stop()
|
326 |
-
|
327 |
-
# 創建問答鏈
|
328 |
-
my_bar.progress(75, text="正在建立知識庫問答系統...")
|
329 |
-
kb_qa_chain = RetrievalQA.from_chain_type(
|
330 |
-
llm=llm,
|
331 |
-
retriever=vectorstore.as_retriever(search_kwargs={"k": top_k}),
|
332 |
-
chain_type="stuff",
|
333 |
-
return_source_documents=True
|
334 |
-
)
|
335 |
-
|
336 |
-
has_knowledge_base = True
|
337 |
-
|
338 |
-
my_bar.progress(100, text="準備完成!")
|
339 |
-
time.sleep(1)
|
340 |
-
my_bar.empty()
|
341 |
-
|
342 |
-
st.success("知識庫已準備就緒,請輸入您的問題")
|
343 |
-
|
344 |
-
except Exception as e:
|
345 |
-
logger.error(f"Excel 檔案處理失敗: {str(e)}")
|
346 |
-
st.error(f"Excel 檔案處理失敗: {str(e)}")
|
347 |
-
|
348 |
-
# 查詢部分
|
349 |
-
st.markdown("## 開始對話")
|
350 |
-
query = st.text_input("請輸入你的問題:")
|
351 |
-
|
352 |
-
if query:
|
353 |
-
with st.spinner("AI 思考中..."):
|
354 |
-
try:
|
355 |
-
start_time = time.time()
|
356 |
-
|
357 |
-
# 根據模式選擇問答方式
|
358 |
-
if mode == "僅使用上傳資料":
|
359 |
-
if has_knowledge_base:
|
360 |
-
st.write("使用知識庫模式回答...")
|
361 |
-
result = kb_qa_chain({"query": query})
|
362 |
-
source = "knowledge_base"
|
363 |
-
source_docs = result["source_documents"]
|
364 |
-
else:
|
365 |
-
st.warning("您選擇了僅使用上傳資料模式,但尚未上傳Excel檔案。請上傳檔案或變更模式。")
|
366 |
-
st.stop()
|
367 |
-
|
368 |
-
elif mode == "僅使用模型知識":
|
369 |
-
st.write("使用模型一般知識模式回答...")
|
370 |
-
result = {"result": general_qa_chain.run(question=query)}
|
371 |
-
source = "general"
|
372 |
-
source_docs = []
|
373 |
-
|
374 |
-
else: # 混合模式
|
375 |
-
if has_knowledge_base:
|
376 |
-
st.write("使用混合模式回答...")
|
377 |
-
result, source, source_docs = hybrid_qa(query, kb_qa_chain, general_qa_chain)
|
378 |
-
else:
|
379 |
-
st.write("未檢測到知識庫,使用模型一般知識回答...")
|
380 |
-
result = {"result": general_qa_chain.run(question=query)}
|
381 |
-
source = "general"
|
382 |
-
source_docs = []
|
383 |
-
|
384 |
-
end_time = time.time()
|
385 |
-
|
386 |
-
# 顯示回答
|
387 |
-
st.markdown("### AI 回答:")
|
388 |
-
st.markdown(result["result"])
|
389 |
-
|
390 |
-
# 根據來源顯示不同信息
|
391 |
-
if source == "knowledge_base":
|
392 |
-
st.success("✅ 回答來自您的知識庫")
|
393 |
-
# 顯示參考資料
|
394 |
-
with st.expander("參考資料"):
|
395 |
-
for i, doc in enumerate(source_docs):
|
396 |
-
st.markdown(f"**參考 {i+1}**")
|
397 |
-
st.markdown(doc.page_content)
|
398 |
-
st.markdown("---")
|
399 |
-
elif source == "general":
|
400 |
-
if has_knowledge_base:
|
401 |
-
st.info("ℹ️ 回答來自模型的一般知識(知識庫中未找到相關內容)")
|
402 |
-
else:
|
403 |
-
st.info("ℹ️ 回答來自模型的一般知識")
|
404 |
-
|
405 |
-
st.text(f"回答生成時間: {(end_time - start_time):.2f} 秒")
|
406 |
-
|
407 |
-
except Exception as e:
|
408 |
-
logger.error(f"查詢處理失敗: {str(e)}")
|
409 |
-
st.error(f"查詢處理失敗,請重試: {str(e)}")
|
410 |
-
st.error(f"錯誤詳情: {str(e)}")
|
411 |
-
|
412 |
-
# 添加會話歷史功能
|
413 |
-
if "chat_history" not in st.session_state:
|
414 |
-
st.session_state.chat_history = []
|
415 |
|
416 |
-
#
|
417 |
-
st.
|
418 |
-
st.markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.llms import HuggingFaceHub
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.docstore.document import Document
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
import os
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# 設定 HuggingFace token
|
12 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "hf_your_token"
|
13 |
+
|
14 |
+
# 假資料:簡單 Q&A 列表
|
15 |
+
qa_data = [
|
16 |
+
{"問題": "什麼是AI?", "答案": "人工智慧(AI)是一種模擬人類智能的技術。"},
|
17 |
+
{"問題": "LangChain是什麼?", "答案": "LangChain 是一個用於構建基於 LLM 的應用框架。"},
|
18 |
+
{"問題": "FAISS有什麼用?", "答案": "FAISS 是一個用於高效相似度搜尋的向量資料庫工具。"},
|
19 |
+
]
|
20 |
+
|
21 |
+
# 將問答資料轉換為 Document 格式
|
22 |
+
def build_documents(qa_data):
|
23 |
+
docs = []
|
24 |
+
for item in qa_data:
|
25 |
+
content = f"問題:{item['問題']}\n答案:{item['答案']}"
|
26 |
+
docs.append(Document(page_content=content))
|
27 |
+
return docs
|
28 |
+
|
29 |
+
# 向量資料庫
|
30 |
+
def create_vectorstore(docs, embeddings):
|
31 |
+
return FAISS.from_documents(docs, embedding=embeddings)
|
32 |
+
|
33 |
+
# 建立嵌入模型
|
34 |
+
def get_embedding_model():
|
35 |
+
return HuggingFaceEmbeddings(model_name="text2vec-base-chinese")
|
36 |
+
|
37 |
+
# 建立語言模型(ChatGLM3)
|
38 |
+
def get_llm_model():
|
39 |
+
return HuggingFaceHub(
|
40 |
+
repo_id="THUDM/chatglm3-6b",
|
41 |
+
model_kwargs={"temperature": 0.1, "max_length": 2048}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# 建立問答鏈
|
45 |
+
def build_qa_chain(llm, vectorstore):
|
46 |
+
return RetrievalQA.from_chain_type(
|
47 |
+
llm=llm,
|
48 |
+
retriever=vectorstore.as_retriever(),
|
49 |
+
chain_type="stuff",
|
50 |
+
return_source_documents=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Streamlit UI
|
54 |
+
st.title("💬 小型知識問答機器人")
|
55 |
+
st.markdown("目前使用內建知識,無需上傳 Excel")
|
56 |
+
|
57 |
+
# 準備模型與資料
|
58 |
+
embedding_model = get_embedding_model()
|
59 |
+
llm_model = get_llm_model()
|
60 |
+
documents = build_documents(qa_data)
|
61 |
+
vectorstore = create_vectorstore(documents, embedding_model)
|
62 |
+
qa_chain = build_qa_chain(llm_model, vectorstore)
|
63 |
+
|
64 |
+
# 問答輸入
|
65 |
+
user_question = st.text_input("請輸入你的問題:")
|
66 |
+
|
67 |
+
if st.button("送出") and user_question:
|
68 |
+
with st.spinner("思考中..."):
|
69 |
+
result = qa_chain({"query": user_question})
|
70 |
+
st.success("回答:")
|
71 |
+
st.write(result["result"])
|