File size: 5,191 Bytes
d389c0e
 
 
 
 
 
 
 
 
 
 
 
 
1008577
 
 
 
d389c0e
 
 
 
 
 
 
 
 
 
1008577
d389c0e
 
 
1008577
 
 
 
 
 
 
d389c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008577
 
 
 
 
 
 
 
d389c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae02592
 
d389c0e
 
 
 
 
 
 
 
 
 
 
b1bc089
d389c0e
 
c3643e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from typing import Union

import numpy as np
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

from config import huggingface_config
from .utils import assert_tokenizer_consistency
from .metrics import perplexity, entropy

torch.set_grad_enabled(False)

# selected using Falcon-7B and Falcon-7B-Instruct at bfloat16
BINOCULARS_ACCURACY_THRESHOLD = 0.9015310749276843  # optimized for f1-score
BINOCULARS_FPR_THRESHOLD = 0.8536432310785527  # optimized for low-fpr

DEVICE_1 = "cuda:0" if torch.cuda.is_available() else "cpu"
DEVICE_2 = "cuda:1" if torch.cuda.device_count() > 1 else DEVICE_1


class Binoculars(object):
    def __init__(self,
                 observer_name_or_path: str = "tiiuae/falcon-7b",
                 performer_name_or_path: str = "tiiuae/falcon-7b-instruct",
                 use_bfloat16: bool = True,
                 max_token_observed: int = 512,
                 mode: str = "low-fpr",
                 ) -> None:
        assert_tokenizer_consistency(observer_name_or_path, performer_name_or_path)

        if mode == "low-fpr":
            self.threshold = BINOCULARS_FPR_THRESHOLD
        elif mode == "accuracy":
            self.threshold = BINOCULARS_ACCURACY_THRESHOLD
        else:
            raise ValueError(f"Invalid mode: {mode}")

        self.observer_model = AutoModelForCausalLM.from_pretrained(observer_name_or_path,
                                                                   device_map={"": DEVICE_1},
                                                                   trust_remote_code=True,
                                                                   torch_dtype=torch.bfloat16 if use_bfloat16
                                                                   else torch.float32,
                                                                   token=huggingface_config["TOKEN"]
                                                                   )
        self.performer_model = AutoModelForCausalLM.from_pretrained(performer_name_or_path,
                                                                    device_map={"": DEVICE_2},
                                                                    trust_remote_code=True,
                                                                    torch_dtype=torch.bfloat16 if use_bfloat16
                                                                    else torch.float32,
                                                                    token=huggingface_config["TOKEN"]
                                                                    )

        self.observer_model.eval()
        self.performer_model.eval()

        self.tokenizer = AutoTokenizer.from_pretrained(observer_name_or_path)
        if not self.tokenizer.pad_token:
            self.tokenizer.pad_token = self.tokenizer.eos_token

        self.max_token_observed = max_token_observed

    def change_mode(self, mode: str) -> None:
        if mode == "low-fpr":
            self.threshold = BINOCULARS_FPR_THRESHOLD
        elif mode == "accuracy":
            self.threshold = BINOCULARS_ACCURACY_THRESHOLD
        else:
            raise ValueError(f"Invalid mode: {mode}")

    def _tokenize(self, batch: list[str]) -> transformers.BatchEncoding:
        batch_size = len(batch)
        encodings = self.tokenizer(
            batch,
            return_tensors="pt",
            padding="longest" if batch_size > 1 else False,
            truncation=True,
            max_length=self.max_token_observed,
            return_token_type_ids=False).to(self.observer_model.device)
        return encodings

    @torch.inference_mode()
    def _get_logits(self, encodings: transformers.BatchEncoding) -> torch.Tensor:
        observer_logits = self.observer_model(**encodings.to(DEVICE_1)).logits
        performer_logits = self.performer_model(**encodings.to(DEVICE_2)).logits
        if DEVICE_1 != "cpu":
            torch.cuda.synchronize()
        return observer_logits, performer_logits

    def compute_score(self, input_text: Union[list[str], str]) -> Union[float, list[float]]:
        batch = [input_text] if isinstance(input_text, str) else input_text
        encodings = self._tokenize(batch)
        observer_logits, performer_logits = self._get_logits(encodings)
        ppl = perplexity(encodings, performer_logits)
        x_ppl = entropy(observer_logits.to(DEVICE_1), performer_logits.to(DEVICE_1),
                        encodings.to(DEVICE_1), self.tokenizer.pad_token_id)
        binoculars_scores = ppl / x_ppl
        binoculars_scores = binoculars_scores.tolist()
        return binoculars_scores[0] if isinstance(input_text, str) else binoculars_scores

    def predict(self, input_text: Union[list[str], str]) -> Union[list[str], str]:
        # binoculars_scores = np.array(self.compute_score(input_text))
        binoculars_scores = self.compute_score(input_text)
        # pred = np.where(binoculars_scores < self.threshold,
        #                 "Most likely AI-generated",
        #                 "Most likely human-generated"
        #                 ).tolist()
        # return pred
        return binoculars_scores