Voice-Chat / src /f5_tts /eval /utils_eval.py
mrfakename's picture
Sync from GitHub repo
48c079f verified
raw
history blame contribute delete
14 kB
import math
import os
import random
import string
from pathlib import Path
import torch
import torch.nn.functional as F
import torchaudio
from tqdm import tqdm
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
from f5_tts.model.modules import MelSpec
from f5_tts.model.utils import convert_char_to_pinyin
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_seedtts_testset_metainfo(metalst):
f = open(metalst)
lines = f.readlines()
f.close()
metainfo = []
for line in lines:
if len(line.strip().split("|")) == 5:
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
elif len(line.strip().split("|")) == 4:
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
if not os.path.isabs(prompt_wav):
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
return metainfo
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
f = open(metalst)
lines = f.readlines()
f.close()
metainfo = []
for line in lines:
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
return metainfo
# padded to max length mel batch
def padded_mel_batch(ref_mels):
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
padded_ref_mels = []
for mel in ref_mels:
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
padded_ref_mels.append(padded_ref_mel)
padded_ref_mels = torch.stack(padded_ref_mels)
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
return padded_ref_mels
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
def get_inference_prompt(
metainfo,
speed=1.0,
tokenizer="pinyin",
polyphone=True,
target_sample_rate=24000,
n_fft=1024,
win_length=1024,
n_mel_channels=100,
hop_length=256,
mel_spec_type="vocos",
target_rms=0.1,
use_truth_duration=False,
infer_batch_size=1,
num_buckets=200,
min_secs=3,
max_secs=40,
):
prompts_all = []
min_tokens = min_secs * target_sample_rate // hop_length
max_tokens = max_secs * target_sample_rate // hop_length
batch_accum = [0] * num_buckets
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
[[] for _ in range(num_buckets)] for _ in range(6)
)
mel_spectrogram = MelSpec(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
n_mel_channels=n_mel_channels,
target_sample_rate=target_sample_rate,
mel_spec_type=mel_spec_type,
)
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
# Audio
ref_audio, ref_sr = torchaudio.load(prompt_wav)
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
if ref_rms < target_rms:
ref_audio = ref_audio * target_rms / ref_rms
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
if ref_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
ref_audio = resampler(ref_audio)
# Text
if len(prompt_text[-1].encode("utf-8")) == 1:
prompt_text = prompt_text + " "
text = [prompt_text + gt_text]
if tokenizer == "pinyin":
text_list = convert_char_to_pinyin(text, polyphone=polyphone)
else:
text_list = text
# Duration, mel frame length
ref_mel_len = ref_audio.shape[-1] // hop_length
if use_truth_duration:
gt_audio, gt_sr = torchaudio.load(gt_wav)
if gt_sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
gt_audio = resampler(gt_audio)
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
# # test vocoder resynthesis
# ref_audio = gt_audio
else:
ref_text_len = len(prompt_text.encode("utf-8"))
gen_text_len = len(gt_text.encode("utf-8"))
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
# to mel spectrogram
ref_mel = mel_spectrogram(ref_audio)
ref_mel = ref_mel.squeeze(0)
# deal with batch
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
assert (
min_tokens <= total_mel_len <= max_tokens
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
utts[bucket_i].append(utt)
ref_rms_list[bucket_i].append(ref_rms)
ref_mels[bucket_i].append(ref_mel)
ref_mel_lens[bucket_i].append(ref_mel_len)
total_mel_lens[bucket_i].append(total_mel_len)
final_text_list[bucket_i].extend(text_list)
batch_accum[bucket_i] += total_mel_len
if batch_accum[bucket_i] >= infer_batch_size:
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
batch_accum[bucket_i] = 0
(
utts[bucket_i],
ref_rms_list[bucket_i],
ref_mels[bucket_i],
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
) = [], [], [], [], [], []
# add residual
for bucket_i, bucket_frames in enumerate(batch_accum):
if bucket_frames > 0:
prompts_all.append(
(
utts[bucket_i],
ref_rms_list[bucket_i],
padded_mel_batch(ref_mels[bucket_i]),
ref_mel_lens[bucket_i],
total_mel_lens[bucket_i],
final_text_list[bucket_i],
)
)
# not only leave easy work for last workers
random.seed(666)
random.shuffle(prompts_all)
return prompts_all
# get wav_res_ref_text of seed-tts test metalst
# https://github.com/BytedanceSpeech/seed-tts-eval
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
f = open(metalst)
lines = f.readlines()
f.close()
test_set_ = []
for line in tqdm(lines):
if len(line.strip().split("|")) == 5:
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
elif len(line.strip().split("|")) == 4:
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
continue
gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
if not os.path.isabs(prompt_wav):
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
test_set_.append((gen_wav, prompt_wav, gt_text))
num_jobs = len(gpus)
if num_jobs == 1:
return [(gpus[0], test_set_)]
wav_per_job = len(test_set_) // num_jobs + 1
test_set = []
for i in range(num_jobs):
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
return test_set
# get librispeech test-clean cross sentence test
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
f = open(metalst)
lines = f.readlines()
f.close()
test_set_ = []
for line in tqdm(lines):
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
if eval_ground_truth:
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
else:
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
test_set_.append((gen_wav, ref_wav, gen_txt))
num_jobs = len(gpus)
if num_jobs == 1:
return [(gpus[0], test_set_)]
wav_per_job = len(test_set_) // num_jobs + 1
test_set = []
for i in range(num_jobs):
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
return test_set
# load asr model
def load_asr_model(lang, ckpt_dir=""):
if lang == "zh":
from funasr import AutoModel
model = AutoModel(
model=os.path.join(ckpt_dir, "paraformer-zh"),
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
# spk_model = os.path.join(ckpt_dir, "cam++"),
disable_update=True,
) # following seed-tts setting
elif lang == "en":
from faster_whisper import WhisperModel
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
model = WhisperModel(model_size, device="cuda", compute_type="float16")
return model
# WER Evaluation, the way Seed-TTS does
def run_asr_wer(args):
rank, lang, test_set, ckpt_dir = args
if lang == "zh":
import zhconv
torch.cuda.set_device(rank)
elif lang == "en":
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
else:
raise NotImplementedError(
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
)
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
from zhon.hanzi import punctuation
punctuation_all = punctuation + string.punctuation
wer_results = []
from jiwer import compute_measures
for gen_wav, prompt_wav, truth in tqdm(test_set):
if lang == "zh":
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
hypo = res[0]["text"]
hypo = zhconv.convert(hypo, "zh-cn")
elif lang == "en":
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
hypo = ""
for segment in segments:
hypo = hypo + " " + segment.text
raw_truth = truth
raw_hypo = hypo
for x in punctuation_all:
truth = truth.replace(x, "")
hypo = hypo.replace(x, "")
truth = truth.replace(" ", " ")
hypo = hypo.replace(" ", " ")
if lang == "zh":
truth = " ".join([x for x in truth])
hypo = " ".join([x for x in hypo])
elif lang == "en":
truth = truth.lower()
hypo = hypo.lower()
measures = compute_measures(truth, hypo)
wer = measures["wer"]
# ref_list = truth.split(" ")
# subs = measures["substitutions"] / len(ref_list)
# dele = measures["deletions"] / len(ref_list)
# inse = measures["insertions"] / len(ref_list)
wer_results.append(
{
"wav": Path(gen_wav).stem,
"truth": raw_truth,
"hypo": raw_hypo,
"wer": wer,
}
)
return wer_results
# SIM Evaluation
def run_sim(args):
rank, test_set, ckpt_dir = args
device = f"cuda:{rank}"
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict["model"], strict=False)
use_gpu = True if torch.cuda.is_available() else False
if use_gpu:
model = model.cuda(device)
model.eval()
sims = []
for wav1, wav2, truth in tqdm(test_set):
wav1, sr1 = torchaudio.load(wav1)
wav2, sr2 = torchaudio.load(wav2)
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
wav1 = resample1(wav1)
wav2 = resample2(wav2)
if use_gpu:
wav1 = wav1.cuda(device)
wav2 = wav2.cuda(device)
with torch.no_grad():
emb1 = model(wav1)
emb2 = model(wav2)
sim = F.cosine_similarity(emb1, emb2)[0].item()
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
sims.append(sim)
return sims