|
import torch |
|
from rvc.lib.algorithm.commons import fused_add_tanh_sigmoid_multiply |
|
|
|
|
|
class WaveNet(torch.nn.Module): |
|
"""WaveNet residual blocks as used in WaveGlow. |
|
|
|
Args: |
|
hidden_channels (int): Number of hidden channels. |
|
kernel_size (int): Size of the convolutional kernel. |
|
dilation_rate (int): Dilation rate of the convolution. |
|
n_layers (int): Number of convolutional layers. |
|
gin_channels (int, optional): Number of conditioning channels. Defaults to 0. |
|
p_dropout (float, optional): Dropout probability. Defaults to 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
p_dropout=0, |
|
): |
|
super().__init__() |
|
assert kernel_size % 2 == 1, "Kernel size must be odd for proper padding." |
|
|
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = (kernel_size,) |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
self.p_dropout = p_dropout |
|
self.n_channels_tensor = torch.IntTensor([hidden_channels]) |
|
|
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
|
|
if gin_channels: |
|
self.cond_layer = torch.nn.utils.parametrizations.weight_norm( |
|
torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1), |
|
name="weight", |
|
) |
|
|
|
|
|
dilations = [dilation_rate**i for i in range(n_layers)] |
|
paddings = [(kernel_size * d - d) // 2 for d in dilations] |
|
|
|
|
|
for i in range(n_layers): |
|
self.in_layers.append( |
|
torch.nn.utils.parametrizations.weight_norm( |
|
torch.nn.Conv1d( |
|
hidden_channels, |
|
2 * hidden_channels, |
|
kernel_size, |
|
dilation=dilations[i], |
|
padding=paddings[i], |
|
), |
|
name="weight", |
|
) |
|
) |
|
|
|
res_skip_channels = ( |
|
hidden_channels if i == n_layers - 1 else 2 * hidden_channels |
|
) |
|
self.res_skip_layers.append( |
|
torch.nn.utils.parametrizations.weight_norm( |
|
torch.nn.Conv1d(hidden_channels, res_skip_channels, 1), |
|
name="weight", |
|
) |
|
) |
|
|
|
def forward(self, x, x_mask, g=None): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch_size, hidden_channels, time_steps). |
|
x_mask (torch.Tensor): Mask tensor (batch_size, 1, time_steps). |
|
g (torch.Tensor, optional): Conditioning tensor (batch_size, gin_channels, time_steps). |
|
""" |
|
output = x.clone().zero_() |
|
|
|
|
|
g = self.cond_layer(g) if g is not None else None |
|
|
|
for i in range(self.n_layers): |
|
x_in = self.in_layers[i](x) |
|
g_l = ( |
|
g[ |
|
:, |
|
i * 2 * self.hidden_channels : (i + 1) * 2 * self.hidden_channels, |
|
:, |
|
] |
|
if g is not None |
|
else 0 |
|
) |
|
|
|
|
|
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.n_channels_tensor) |
|
acts = self.drop(acts) |
|
|
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.n_layers - 1: |
|
res_acts = res_skip_acts[:, : self.hidden_channels, :] |
|
x = (x + res_acts) * x_mask |
|
output = output + res_skip_acts[:, self.hidden_channels :, :] |
|
else: |
|
output = output + res_skip_acts |
|
|
|
return output * x_mask |
|
|
|
def remove_weight_norm(self): |
|
"""Remove weight normalization from the module.""" |
|
if self.gin_channels: |
|
torch.nn.utils.remove_weight_norm(self.cond_layer) |
|
for layer in self.in_layers: |
|
torch.nn.utils.remove_weight_norm(layer) |
|
for layer in self.res_skip_layers: |
|
torch.nn.utils.remove_weight_norm(layer) |
|
|