File size: 14,070 Bytes
1c7d911 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import argparse
import logging
import os
import sys
import shutil
import zipfile
import re
import yt_dlp
from pathlib import Path
from urllib.parse import urlparse
from functools import lru_cache
import gradio as gr
import requests
from traceback import format_exc
import asyncio
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler(), logging.FileHandler('neorvc.log')]
)
logger = logging.getLogger(__name__)
# Base directory setup
BASE_DIR = os.getcwd()
sys.path.append(BASE_DIR)
try:
from neorvc.main_cli import song_cover_pipeline, vocal_cover_pipeline
from rvc.rvc_cli import run_prerequisites_script
except ImportError as e:
logger.error(f"Failed to import pipeline functions: {e}")
raise gr.Error(f"Failed to load required modules. Please check installation: {e}")
# Run prerequisites
try:
run_prerequisites_script(
models=True,
exe=False,
)
except Exception as e:
logger.error(f"Error running prerequisites: {e}")
raise gr.Error(f"Failed to initialize prerequisites: {e}")
# Directory configuration
CONFIG = {
"models_dir": "logs",
"output_dir": "song_output",
"max_upload_size_mb": 500
}
RVC_MODELS_DIR = os.path.join(BASE_DIR, CONFIG['models_dir'])
OUTPUT_DIR = os.path.join(BASE_DIR, CONFIG['output_dir'])
ALLOWED_DIR = os.path.abspath(BASE_DIR)
AUDIO_EXTS = ['.mp3', '.wav', '.flac', '.ogg', '.m4a']
# Ensure directories exist
try:
os.makedirs(RVC_MODELS_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
except OSError as e:
logger.error(f"Error creating directories: {e}")
raise gr.Error(f"Failed to create required directories: {e}")
@lru_cache(maxsize=1)
def get_current_models(models_dir):
"""Retrieve list of model directories, excluding specific items."""
try:
models_list = [item for item in os.listdir(models_dir) if item != 'mute' and os.path.isdir(os.path.join(models_dir, item))]
return sorted(models_list)
except OSError as e:
logger.error(f"Error accessing models directory: {e}\n{format_exc()}")
raise gr.Error(f"Failed to list models. Check directory permissions: {e}")
def update_models_list():
"""Update the dropdown list of available models."""
try:
get_current_models.cache_clear()
models = get_current_models(RVC_MODELS_DIR)
if not models:
return gr.update(choices=[], value=None), "No models found in the directory."
return gr.update(choices=models, value=None), "Model list refreshed successfully."
except Exception as e:
logger.error(f"Error updating models list: {e}\n{format_exc()}")
return gr.update(choices=[]), f"Failed to refresh models: {e}"
def sanitize_model_name(dir_name):
"""Sanitize model name to prevent invalid characters."""
if not dir_name:
raise gr.Error("Model name cannot be empty.")
if not re.match(r'^[a-zA-Z0-9_-]+$', dir_name):
raise gr.Error("Invalid model name. Use alphanumeric characters, underscores, or hyphens only.")
return dir_name
def validate_file_path(file_path):
"""Ensure file path is within allowed directory."""
try:
file_path = os.path.abspath(file_path)
if not os.path.commonpath([file_path, ALLOWED_DIR]).startswith(ALLOWED_DIR):
raise gr.Error("File path is outside allowed directory.")
return file_path
except Exception as e:
logger.error(f"Invalid file path: {e}\n{format_exc()}")
raise gr.Error(f"Invalid file path: {e}")
def extract_zip(extraction_folder, zip_path, progress=gr.Progress()):
"""Extract zip file and organize model files."""
try:
extraction_folder = validate_file_path(extraction_folder)
zip_path = validate_file_path(zip_path)
os.makedirs(extraction_folder, exist_ok=True)
progress(0.2, desc="Extracting zip file...")
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_path)
except (zipfile.BadZipFile, OSError) as e:
shutil.rmtree(extraction_folder, ignore_errors=True)
logger.error(f"Error extracting zip: {e}\n{format_exc()}")
raise gr.Error(f"Failed to extract zip file. Ensure it's a valid zip: {e}")
index_filepath = model_filepath = None
try:
for root, _, files in os.walk(extraction_folder):
for name in files:
file_path = os.path.join(root, name)
try:
if name.endswith('.index') and os.path.getsize(file_path) > 1024 * 100:
index_filepath = file_path
elif name.endswith('.pth') and os.path.getsize(file_path) > 1024 * 1024 * 40:
model_filepath = file_path
except OSError as sub_e:
logger.warning(f"Error accessing file {file_path}: {sub_e}")
continue
except Exception as e:
logger.error(f"Error scanning extracted files: {e}\n{format_exc()}")
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"Failed to process extracted files: {e}")
if not model_filepath:
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"No valid .pth model file found in {extraction_folder}. Ensure a model file (>40MB) is included.")
try:
for filepath in (model_filepath, index_filepath):
if filepath:
new_path = os.path.join(extraction_folder, os.path.basename(filepath))
if filepath != new_path:
os.rename(filepath, new_path)
for item in os.listdir(extraction_folder):
item_path = os.path.join(extraction_folder, item)
if os.path.isdir(item_path):
shutil.rmtree(item_path, ignore_errors=True)
except OSError as e:
logger.error(f"Error organizing extracted files: {e}\n{format_exc()}")
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"Failed to organize model files: {e}")
progress(1.0, desc="Zip extraction completed")
return f"Model extracted to {extraction_folder}"
def download_online_model(url, dir_name, progress=gr.Progress()):
"""Download and extract a model from a URL synchronously."""
try:
dir_name = sanitize_model_name(dir_name)
if not url:
raise gr.Error("URL is required.")
if not url.startswith(('http://', 'https://')):
raise gr.Error("Invalid URL format. Must start with http:// or https://.")
extraction_folder = os.path.join(RVC_MODELS_DIR, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f"Model directory '{dir_name}' already exists! Choose a different name.")
progress(0.1, desc=f"Preparing to download '{dir_name}'...")
zip_name = urlparse(url).path.split('/')[-1]
if 'pixeldrain.com' in url:
zip_name = os.path.basename(zip_name)
url = f'https://pixeldrain.com/api/file/{zip_name}'
zip_path = os.path.join(OUTPUT_DIR, zip_name)
progress(0.2, desc="Downloading model...")
response = requests.get(url, stream=True, timeout=600)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
downloaded = 0
with open(zip_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size:
progress(0.2 + 0.6 * (downloaded / total_size), desc="Downloading...")
progress(0.8, desc="Extracting model...")
extract_zip(extraction_folder, zip_path, progress)
progress(1.0, desc="Download completed")
return f"Model '{dir_name}' successfully downloaded and extracted!", "Model download completed."
except requests.exceptions.RequestException as e:
logger.error(f"HTTP error during download: {e}\n{format_exc()}")
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"Failed to download model: {e}")
except Exception as e:
logger.error(f"Download failed: {e}\n{format_exc()}")
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"Failed to download model: {e}")
def upload_local_model(zip_file, dir_name, progress=gr.Progress()):
"""Upload and extract a local model zip file."""
try:
dir_name = sanitize_model_name(dir_name)
if not zip_file:
raise gr.Error("No file uploaded. Please select a zip file.")
zip_path = zip_file.name
if not os.path.exists(zip_path):
raise gr.Error("Uploaded file not found. Please try again.")
if os.path.getsize(zip_path) > CONFIG['max_upload_size_mb'] * 1024 * 1024:
raise gr.Error(f"File size exceeds {CONFIG['max_upload_size_mb']}MB limit.")
extraction_folder = os.path.join(RVC_MODELS_DIR, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f"Model directory '{dir_name}' already exists! Choose a different name.")
progress(0.5, desc="Processing uploaded file...")
extract_zip(extraction_folder, zip_path, progress)
return f"Model '{dir_name}' successfully uploaded and extracted!", "Model upload completed."
except Exception as e:
logger.error(f"Upload failed: {e}\n{format_exc()}")
shutil.rmtree(extraction_folder, ignore_errors=True)
raise gr.Error(f"Failed to upload model: {e}")
def delete_model(model_name):
"""Delete a model directory."""
try:
if not model_name:
raise gr.Error("No model selected. Please choose a model to delete.")
model_path = os.path.join(RVC_MODELS_DIR, model_name)
if not os.path.exists(model_path):
raise gr.Error(f"Model '{model_name}' not found.")
shutil.rmtree(model_path)
return f"Model '{model_name}' deleted successfully!", "Model deletion completed."
except OSError as e:
logger.error(f"Failed to delete model: {e}\n{format_exc()}")
raise gr.Error(f"Failed to delete model: {e}")
def swap_visibility():
"""Toggle visibility of YouTube link and file upload columns."""
return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
def process_file_upload(file):
"""Handle file upload and update UI."""
try:
if not file:
raise gr.Error("No file uploaded. Please select an audio file.")
file_path = file.name
if os.path.splitext(file_path)[1].lower() not in AUDIO_EXTS:
raise gr.Error(f"Unsupported file format. Supported formats: {', '.join(AUDIO_EXTS)}")
return file_path, gr.update(value=file_path)
except Exception as e:
logger.error(f"File upload processing failed: {e}\n{format_exc()}")
raise gr.Error(f"Failed to process uploaded file: {e}")
def show_hop_slider(pitch_detection_algo):
"""Show/hide crepe hop length slider based on pitch detection algorithm."""
return gr.update(visible=pitch_detection_algo == 'crepe')
async def run_async_pipeline(pipeline, **kwargs):
"""Run an async pipeline."""
try:
logger.debug(f"Running pipeline with kwargs: {kwargs}")
return await pipeline(**kwargs)
except Exception as e:
logger.error(f"Pipeline execution failed: {e}\n{format_exc()}")
raise
async def generate_switch(
song_input, rvc_model, pitch, keep_files, main_gain,
backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
f0_method, crepe_hop_length, protect, output_format, vocal_only,
progress=gr.Progress()
):
"""Run the appropriate pipeline based on vocal_only flag."""
try:
logger.info("Starting generate_switch with inputs: "
f"song_input={song_input}, rvc_model={rvc_model}, vocal_only={vocal_only}")
# Validate inputs first
if not song_input:
raise gr.Error("Song input is required. Provide a YouTube link or file path.")
if not rvc_model:
raise gr.Error("Voice model is required. Select a model from the dropdown.")
# Select pipeline
pipeline = vocal_cover_pipeline if vocal_only else song_cover_pipeline
logger.info(f"Selected pipeline: {'vocal_cover_pipeline' if vocal_only else 'song_cover_pipeline'}")
# Validate song_input path if it's a local file
song_input = validate_file_path(song_input) if os.path.exists(song_input) else song_input
# Run the pipeline
progress(0.1, desc="Initializing conversion...")
result = await run_async_pipeline(
pipeline,
song_input=song_input,
voice_model=rvc_model,
pitch_change=pitch,
keep_files=keep_files,
main_gain=main_gain,
backup_gain=backup_gain,
inst_gain=inst_gain,
index_rate=index_rate,
filter_radius=filter_radius,
rms_mix_rate=rms_mix_rate,
f0_method=f0_method,
crepe_hop_length=crepe_hop_length,
protect=protect,
output_format=output_format
)
progress(1.0, desc="Conversion completed")
logger.info("Pipeline execution completed successfully")
return result, gr.Info("Conversion completed successfully.")
except yt_dlp.utils.DownloadError as e:
logger.error(f"YouTube download failed: {e}\n{format_exc()}")
raise gr.Error(f"Failed to download audio from YouTube. Check the URL or cookies file: {e}")
except Exception as e:
logger.error(f"Conversion failed: {e}\n{format_exc()}")
raise gr.Error(f"Failed to process conversion: {e}")
# endcode UwU
|