File size: 8,562 Bytes
1c2b077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import logging
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from sentence_transformers import SentenceTransformer
from pymilvus import MilvusClient, DataType
import time
import gradio as gr

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(levelname)s %(message)s'
)
logger = logging.getLogger(__name__)

models = [
    'shibing624/text2vec-base-chinese',
    'BAAI/bge-small-zh',
    'BAAI/bge-base-zh',
    'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2',
    'all-MiniLM-L6-v2',
    'all-MiniLM-L12-v2',
    'multi-qa-mpnet-base-dot-v1',
    # 'bge-small-en-v1.5', 不兼容
    'all-mpnet-base-v2',
    'jinaai/jina-embeddings-v3',
]


searchers = {}


class BaseEmbeddingModel(ABC):
    @abstractmethod
    def encode(self, text: str) -> List[float]:
        pass

    @property
    @abstractmethod
    def dimension(self) -> int:
        pass

    @property
    @abstractmethod
    def model_name(self) -> str:
        pass

class SentenceTransformerModel(BaseEmbeddingModel):
    def __init__(self, model_name: str):
        self.model = SentenceTransformer(model_name, trust_remote_code=True)
        self._model_name = model_name

    def encode(self, text: str) -> List[float]:
        result = self.model.encode(text).tolist()
        return result

    @property
    def dimension(self) -> int:
        return self.model.get_sentence_embedding_dimension()

    @property
    def model_name(self) -> str:
        return self._model_name

class StickerSearcher:
    def __init__(self, model: BaseEmbeddingModel):
        self.model = model
        self.client = MilvusClient(uri='./sticker.db')
        self.collection_name = f'test_{model.model_name.replace("/", "_").replace("-", "_")}'

    def init_collection(self) -> bool:
        try:
            self.client.drop_collection(collection_name=self.collection_name)
            self.client.create_collection(
                collection_name=self.collection_name,
                dimension=self.model.dimension,
                primary_field_name='id',
                auto_id=True
            )
            self.client.create_index(
                collection_name=self.collection_name,
                index_type='IVF_SQ8',
                metric_type='COSINE',
                params={'nlist': 128},
                index_params={}
            )
            self.client.load_collection(self.collection_name)
            logger.info(f'Collection initialized: {self.collection_name}')
            return True
        except Exception as e:
            logger.error(f'Collection init failed: {str(e)}')
            return False

    def store_vector(self, title: str, description: str, tags: List[str], file_path: str):
        vector = self.model.encode(description)
        data = [{
            'vector': vector,
            'title': title,
            'description': description,
            'tags': tags,
            'file_name': file_path
        }]
        self.client.insert(self.collection_name, data)

    def search(self, query: str, limit: int = 5) -> List[Dict[str, Any]]:
        start_time = time.time()
        query_vector = self.model.encode(query)
        encode_time = time.time() - start_time
        start_search_time = time.time()
        results = self.client.search(
            collection_name=self.collection_name,
            data=[query_vector],
            limit=limit,
            output_fields=['title', 'description', 'tags', 'file_name']
        )
        search_time = time.time() - start_search_time
        total_time = encode_time + search_time
        logger.info(f'模型 {self.model.model_name} Encoding耗时: ${encode_time:.4f},搜索耗时: {search_time:.4f} 秒, 总耗时: {total_time:.4f} 秒')
        return results[0]

def create_gradio_ui():

    async def search_model(model_name: str, query: str):
        try:
            if model_name in searchers:
                return searchers[model_name].search(query)
            logger.error(f'Model not loaded: {model_name}')
            return []
        except Exception as e:
            logger.error(f'Search failed: {model_name} | Error: {str(e)}')
            return []

    async def search_all_models(query):
        if not query:
            return []

        print(f'>>>> Searching From Models {query}')
        results = []
        for model_name in models:
            result = await search_model(model_name, query)
            results.append(result)

        formatted_results = []
        max_results = max(len(r) for r in results)

        for i in range(max_results):
            row = [i + 1]
            for model_results in results:
                if i < len(model_results):
                    result = model_results[i]
                    image_url = f'https://huggingface.co/datasets/Nekoko/StickerSet/resolve/main/{result["entity"]["file_name"]}'
                    row.append(f'![Sticker]({image_url})\n相似度: {result["distance"]:.4f}')
                else:
                    row.append('-')
            formatted_results.append(row)
        return formatted_results

    def init_collections():
        try:
            client = MilvusClient(uri='./sticker.db')
            stickers = client.query(
                collection_name='stickers',
                filter='',
                limit=1000,
                output_fields=['title', 'description', 'tags', 'file_name']
            )
            logger.info(f'Stickers loaded: {len(stickers)}')

            def init_model(model_name):
                try:
                    searcher = StickerSearcher(SentenceTransformerModel(model_name))
                    if searcher.init_collection():
                        searchers[model_name] = searcher
                        for sticker in stickers:
                            searcher.store_vector(
                                sticker.get('title'),
                                sticker.get('description'),
                                sticker.get('tags'),
                                sticker.get('file_name')
                                )
                        logger.info(f'Model initialized: {model_name}')
                except Exception as e:
                    logger.error(f'Model init failed: {model_name} | Error: {str(e)}')

            for model_name in models:
                print(f'>>>> 初始化模型 {model_name}')
                start_time = time.time()
                init_model(model_name)
                print(f'>>>> 初始化模型 {model_name} 完成 ✅,耗时 {time.time() - start_time:.4f} 秒')
            print(f'>>>> 初始化所有模型完成 ✅')
            return '初始化成功!'
        except Exception as e:
            logger.error(f'Data init failed: {str(e)}')
            return f'初始化失败: {str(e)}'

    with gr.Blocks(title='Neko Sticker Search 🔍', css='.gradio-container img { width: 200px !important; height: 200px !important; object-fit: contain; }') as demo:
        with gr.Row():
            search_input = gr.Textbox(label='搜索关键词')
            search_button = gr.Button('搜索')


        headers = ['序号'] + [f'🧊{model.split("/")[-1]}' for i, model in enumerate(models)]
        results_table = gr.Dataframe(
            headers=headers,
            datatype=['number'] + ['markdown'] * len(models),
            row_count=5,
            col_count=len(models) + 1
        )

        status_box = gr.Textbox(label='状态', interactive=False)
        refresh_button = gr.Button('刷新数据')

        refresh_button.click(fn=init_collections, outputs=status_box)
        # 由于这里只是简单的搜索操作,可以直接使用同步方式调用
        search_button.click(
            fn=search_all_models, 
            inputs=[search_input], 
            outputs=results_table
)

    return demo

if __name__ == '__main__':

    # 提前加载所有模型
    start_time = time.time()
    for index, model_name in enumerate(models):
        try:
            start_time = time.time()
            searchers[model_name] = StickerSearcher(SentenceTransformerModel(model_name))
            print(f'>>>> 预加载模型 {model_name} 完成 ✅, 耗时 {time.time() - start_time:.4f} 秒')
        except Exception as e:
            logger.error(f'Model preload failed: {model_name} | Error: {str(e)}')

    logger.info(f'>>>> 预加载模型完成 ✅: {models}, 耗时 {time.time() - start_time:.4f} 秒')



    demo = create_gradio_ui()
    demo.launch()