Spaces:
Sleeping
Sleeping
File size: 8,562 Bytes
1c2b077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import logging
from abc import ABC, abstractmethod
from typing import List, Dict, Any
from sentence_transformers import SentenceTransformer
from pymilvus import MilvusClient, DataType
import time
import gradio as gr
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s'
)
logger = logging.getLogger(__name__)
models = [
'shibing624/text2vec-base-chinese',
'BAAI/bge-small-zh',
'BAAI/bge-base-zh',
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2',
'all-MiniLM-L6-v2',
'all-MiniLM-L12-v2',
'multi-qa-mpnet-base-dot-v1',
# 'bge-small-en-v1.5', 不兼容
'all-mpnet-base-v2',
'jinaai/jina-embeddings-v3',
]
searchers = {}
class BaseEmbeddingModel(ABC):
@abstractmethod
def encode(self, text: str) -> List[float]:
pass
@property
@abstractmethod
def dimension(self) -> int:
pass
@property
@abstractmethod
def model_name(self) -> str:
pass
class SentenceTransformerModel(BaseEmbeddingModel):
def __init__(self, model_name: str):
self.model = SentenceTransformer(model_name, trust_remote_code=True)
self._model_name = model_name
def encode(self, text: str) -> List[float]:
result = self.model.encode(text).tolist()
return result
@property
def dimension(self) -> int:
return self.model.get_sentence_embedding_dimension()
@property
def model_name(self) -> str:
return self._model_name
class StickerSearcher:
def __init__(self, model: BaseEmbeddingModel):
self.model = model
self.client = MilvusClient(uri='./sticker.db')
self.collection_name = f'test_{model.model_name.replace("/", "_").replace("-", "_")}'
def init_collection(self) -> bool:
try:
self.client.drop_collection(collection_name=self.collection_name)
self.client.create_collection(
collection_name=self.collection_name,
dimension=self.model.dimension,
primary_field_name='id',
auto_id=True
)
self.client.create_index(
collection_name=self.collection_name,
index_type='IVF_SQ8',
metric_type='COSINE',
params={'nlist': 128},
index_params={}
)
self.client.load_collection(self.collection_name)
logger.info(f'Collection initialized: {self.collection_name}')
return True
except Exception as e:
logger.error(f'Collection init failed: {str(e)}')
return False
def store_vector(self, title: str, description: str, tags: List[str], file_path: str):
vector = self.model.encode(description)
data = [{
'vector': vector,
'title': title,
'description': description,
'tags': tags,
'file_name': file_path
}]
self.client.insert(self.collection_name, data)
def search(self, query: str, limit: int = 5) -> List[Dict[str, Any]]:
start_time = time.time()
query_vector = self.model.encode(query)
encode_time = time.time() - start_time
start_search_time = time.time()
results = self.client.search(
collection_name=self.collection_name,
data=[query_vector],
limit=limit,
output_fields=['title', 'description', 'tags', 'file_name']
)
search_time = time.time() - start_search_time
total_time = encode_time + search_time
logger.info(f'模型 {self.model.model_name} Encoding耗时: ${encode_time:.4f},搜索耗时: {search_time:.4f} 秒, 总耗时: {total_time:.4f} 秒')
return results[0]
def create_gradio_ui():
async def search_model(model_name: str, query: str):
try:
if model_name in searchers:
return searchers[model_name].search(query)
logger.error(f'Model not loaded: {model_name}')
return []
except Exception as e:
logger.error(f'Search failed: {model_name} | Error: {str(e)}')
return []
async def search_all_models(query):
if not query:
return []
print(f'>>>> Searching From Models {query}')
results = []
for model_name in models:
result = await search_model(model_name, query)
results.append(result)
formatted_results = []
max_results = max(len(r) for r in results)
for i in range(max_results):
row = [i + 1]
for model_results in results:
if i < len(model_results):
result = model_results[i]
image_url = f'https://huggingface.co/datasets/Nekoko/StickerSet/resolve/main/{result["entity"]["file_name"]}'
row.append(f'\n相似度: {result["distance"]:.4f}')
else:
row.append('-')
formatted_results.append(row)
return formatted_results
def init_collections():
try:
client = MilvusClient(uri='./sticker.db')
stickers = client.query(
collection_name='stickers',
filter='',
limit=1000,
output_fields=['title', 'description', 'tags', 'file_name']
)
logger.info(f'Stickers loaded: {len(stickers)}')
def init_model(model_name):
try:
searcher = StickerSearcher(SentenceTransformerModel(model_name))
if searcher.init_collection():
searchers[model_name] = searcher
for sticker in stickers:
searcher.store_vector(
sticker.get('title'),
sticker.get('description'),
sticker.get('tags'),
sticker.get('file_name')
)
logger.info(f'Model initialized: {model_name}')
except Exception as e:
logger.error(f'Model init failed: {model_name} | Error: {str(e)}')
for model_name in models:
print(f'>>>> 初始化模型 {model_name}')
start_time = time.time()
init_model(model_name)
print(f'>>>> 初始化模型 {model_name} 完成 ✅,耗时 {time.time() - start_time:.4f} 秒')
print(f'>>>> 初始化所有模型完成 ✅')
return '初始化成功!'
except Exception as e:
logger.error(f'Data init failed: {str(e)}')
return f'初始化失败: {str(e)}'
with gr.Blocks(title='Neko Sticker Search 🔍', css='.gradio-container img { width: 200px !important; height: 200px !important; object-fit: contain; }') as demo:
with gr.Row():
search_input = gr.Textbox(label='搜索关键词')
search_button = gr.Button('搜索')
headers = ['序号'] + [f'🧊{model.split("/")[-1]}' for i, model in enumerate(models)]
results_table = gr.Dataframe(
headers=headers,
datatype=['number'] + ['markdown'] * len(models),
row_count=5,
col_count=len(models) + 1
)
status_box = gr.Textbox(label='状态', interactive=False)
refresh_button = gr.Button('刷新数据')
refresh_button.click(fn=init_collections, outputs=status_box)
# 由于这里只是简单的搜索操作,可以直接使用同步方式调用
search_button.click(
fn=search_all_models,
inputs=[search_input],
outputs=results_table
)
return demo
if __name__ == '__main__':
# 提前加载所有模型
start_time = time.time()
for index, model_name in enumerate(models):
try:
start_time = time.time()
searchers[model_name] = StickerSearcher(SentenceTransformerModel(model_name))
print(f'>>>> 预加载模型 {model_name} 完成 ✅, 耗时 {time.time() - start_time:.4f} 秒')
except Exception as e:
logger.error(f'Model preload failed: {model_name} | Error: {str(e)}')
logger.info(f'>>>> 预加载模型完成 ✅: {models}, 耗时 {time.time() - start_time:.4f} 秒')
demo = create_gradio_ui()
demo.launch() |