Spaces:
Running
Running
File size: 31,638 Bytes
e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 d3b24af e581bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import argparse
import base64
import logging
import os
import sys
import traceback
import threading
from collections import Counter
from io import BytesIO
from typing import Dict, List, Optional, Tuple
import gradio as gr
import pandas as pd
import requests
import torch
import uvicorn
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from PIL import Image, ImageDraw, ImageStat
from transformers import (
DetrForObjectDetection,
DetrForSegmentation,
DetrImageProcessor,
YolosForObjectDetection,
YolosImageProcessor,
)
import nest_asyncio
# ------------------------------
# Configuration
# ------------------------------
# Logging configuration
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# Model and processing constants
CONFIDENCE_THRESHOLD: float = 0.5
VALID_MODELS: List[str] = [
"facebook/detr-resnet-50",
"facebook/detr-resnet-101",
"facebook/detr-resnet-50-panoptic",
"facebook/detr-resnet-101-panoptic",
"hustvl/yolos-tiny",
"hustvl/yolos-base",
]
MODEL_DESCRIPTIONS: Dict[str, str] = {
"facebook/detr-resnet-50": (
"DETR with ResNet-50 backbone for object detection. Fast and accurate for general use."
),
"facebook/detr-resnet-101": (
"DETR with ResNet-101 backbone for object detection. More accurate but slower than ResNet-50."
),
"facebook/detr-resnet-50-panoptic": (
"DETR with ResNet-50 for panoptic segmentation. Detects objects and segments scenes."
),
"facebook/detr-resnet-101-panoptic": (
"DETR with ResNet-101 for panoptic segmentation. High accuracy for complex scenes."
),
"hustvl/yolos-tiny": (
"YOLOS Tiny model. Lightweight and fast, ideal for resource-constrained environments."
),
"hustvl/yolos-base": (
"YOLOS Base model. Balances speed and accuracy for object detection."
),
}
# Port configuration
DEFAULT_GRADIO_PORT: int = 7860
DEFAULT_FASTAPI_PORT: int = 8000
PORT_RANGE: range = range(7860, 7870) # Try ports 7860-7869
MAX_PORT_ATTEMPTS: int = 10
# Thread-safe storage for lazy-loaded models and processors
models: Dict[str, any] = {}
processors: Dict[str, any] = {}
model_lock = threading.Lock()
# ------------------------------
# Model Loading
# ------------------------------
def load_model_and_processor(model_name: str) -> Tuple[any, any]:
"""
Load and cache the specified model and processor thread-safely.
Args:
model_name: Name of the model to load (must be in VALID_MODELS).
Returns:
Tuple containing the loaded model and processor.
Raises:
ValueError: If the model_name is invalid or loading fails.
"""
with model_lock:
if model_name not in models:
logger.info(f"Loading model: {model_name}")
try:
if "yolos" in model_name:
models[model_name] = YolosForObjectDetection.from_pretrained(model_name)
processors[model_name] = YolosImageProcessor.from_pretrained(model_name)
elif "panoptic" in model_name:
models[model_name] = DetrForSegmentation.from_pretrained(model_name)
processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
else:
models[model_name] = DetrForObjectDetection.from_pretrained(model_name)
processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
logger.debug(f"Model {model_name} loaded successfully")
except Exception as e:
logger.error(f"Failed to load model {model_name}: {str(e)}")
raise ValueError(f"Failed to load model: {str(e)}")
return models[model_name], processors[model_name]
# ------------------------------
# Image Processing
# ------------------------------
def process(image: Image.Image, model_name: str) -> Tuple[Image.Image, List[str], List[float], List[str], List[float], Dict[str, str]]:
"""
Process an image for object detection or panoptic segmentation.
Args:
image: PIL Image to process.
model_name: Name of the model to use (must be in VALID_MODELS).
Returns:
Tuple containing:
- Annotated image (PIL Image).
- List of detected object names.
- List of confidence scores for detected objects.
- List of unique object names.
- List of confidence scores for unique objects.
- Dictionary of image properties (format, size, etc.).
Raises:
ValueError: If the model_name is invalid.
RuntimeError: If processing fails due to model or image issues.
"""
if model_name not in VALID_MODELS:
raise ValueError(f"Invalid model: {model_name}. Choose from: {VALID_MODELS}")
try:
# Load model and processor
model, processor = load_model_and_processor(model_name)
logger.debug(f"Processing image with model: {model_name}")
# Prepare image for processing
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Initialize drawing context
draw = ImageDraw.Draw(image)
object_names: List[str] = []
confidence_scores: List[float] = []
object_counter = Counter()
target_sizes = torch.tensor([image.size[::-1]])
# Process panoptic segmentation or object detection
if "panoptic" in model_name:
processed_sizes = torch.tensor([[inputs["pixel_values"].shape[2], inputs["pixel_values"].shape[3]]])
results = processor.post_process_panoptic(outputs, target_sizes=target_sizes, processed_sizes=processed_sizes)[0]
for segment in results["segments_info"]:
label = segment["label_id"]
label_name = model.config.id2label.get(label, "Unknown")
score = segment.get("score", 1.0)
# Apply segmentation mask if available
if "masks" in results and segment["id"] < len(results["masks"]):
mask = results["masks"][segment["id"]].cpu().numpy()
if mask.shape[0] > 0 and mask.shape[1] > 0:
mask_image = Image.fromarray((mask * 255).astype("uint8"))
colored_mask = Image.new("RGBA", image.size, (0, 0, 0, 0))
mask_draw = ImageDraw.Draw(colored_mask)
r, g, b = (segment["id"] * 50) % 255, (segment["id"] * 100) % 255, (segment["id"] * 150) % 255
mask_draw.bitmap((0, 0), mask_image, fill=(r, g, b, 128))
image = Image.alpha_composite(image.convert("RGBA"), colored_mask).convert("RGB")
draw = ImageDraw.Draw(image)
if score > CONFIDENCE_THRESHOLD:
object_names.append(label_name)
confidence_scores.append(float(score))
object_counter[label_name] = float(score)
else:
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
if score > CONFIDENCE_THRESHOLD:
x, y, x2, y2 = box.tolist()
draw.rectangle([x, y, x2, y2], outline="#32CD32", width=2)
label_name = model.config.id2label.get(label.item(), "Unknown")
text = f"{label_name}: {score:.2f}"
text_bbox = draw.textbbox((0, 0), text)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
draw.text((x2 - text_width - 2, y - text_height - 2), text, fill="#32CD32")
object_names.append(label_name)
confidence_scores.append(float(score))
object_counter[label_name] = float(score)
# Compile unique objects and confidences
unique_objects = list(object_counter.keys())
unique_confidences = [object_counter[obj] for obj in unique_objects]
# Calculate image properties
properties: Dict[str, str] = {
"Format": image.format if hasattr(image, "format") and image.format else "Unknown",
"Size": f"{image.width}x{image.height}",
"Width": f"{image.width} px",
"Height": f"{image.height} px",
"Mode": image.mode,
"Aspect Ratio": (
f"{round(image.width / image.height, 2)}" if image.height != 0 else "Undefined"
),
"File Size": "Unknown",
"Mean (R,G,B)": "Unknown",
"StdDev (R,G,B)": "Unknown",
}
# Compute file size
try:
buffered = BytesIO()
image.save(buffered, format="PNG")
properties["File Size"] = f"{len(buffered.getvalue()) / 1024:.2f} KB"
except Exception as e:
logger.error(f"Error calculating file size: {str(e)}")
# Compute color statistics
try:
stat = ImageStat.Stat(image)
properties["Mean (R,G,B)"] = ", ".join(f"{m:.2f}" for m in stat.mean)
properties["StdDev (R,G,B)"] = ", ".join(f"{s:.2f}" for s in stat.stddev)
except Exception as e:
logger.error(f"Error calculating color statistics: {str(e)}")
return image, object_names, confidence_scores, unique_objects, unique_confidences, properties
except Exception as e:
logger.error(f"Error in process: {str(e)}\n{traceback.format_exc()}")
raise RuntimeError(f"Failed to process image: {str(e)}")
# ------------------------------
# FastAPI Setup
# ------------------------------
app = FastAPI(title="Object Detection API")
@app.post("/detect")
async def detect_objects_endpoint(
file: Optional[UploadFile] = File(None),
image_url: Optional[str] = Form(None),
model_name: str = Form(VALID_MODELS[0]),
) -> JSONResponse:
"""
FastAPI endpoint to detect objects in an image from file upload or URL.
Args:
file: Uploaded image file (optional).
image_url: URL of the image (optional).
model_name: Model to use for detection (default: first VALID_MODELS entry).
Returns:
JSONResponse containing the processed image (base64), detected objects, and confidences.
Raises:
HTTPException: If input validation fails or processing errors occur.
"""
try:
# Validate input
if (file is None and not image_url) or (file is not None and image_url):
raise HTTPException(
status_code=400,
detail="Provide either an image file or an image URL, not both.",
)
# Load image
if file:
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
contents = await file.read()
image = Image.open(BytesIO(contents)).convert("RGB")
else:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB")
if model_name not in VALID_MODELS:
raise HTTPException(
status_code=400,
detail=f"Invalid model. Choose from: {VALID_MODELS}",
)
# Process image
detected_image, detected_objects, detected_confidences, unique_objects, unique_confidences, _ = process(
image, model_name
)
# Encode image as base64
buffered = BytesIO()
detected_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_url = f"data:image/png;base64,{img_base64}"
return JSONResponse(
content={
"image_url": img_url,
"detected_objects": detected_objects,
"confidence_scores": detected_confidences,
"unique_objects": unique_objects,
"unique_confidence_scores": unique_confidences,
}
)
except requests.RequestException as e:
logger.error(f"Error fetching image from URL: {str(e)}")
raise HTTPException(status_code=400, detail=f"Failed to fetch image: {str(e)}")
except Exception as e:
logger.error(f"Error in FastAPI endpoint: {str(e)}\n{traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
# ------------------------------
# Gradio UI Setup
# ------------------------------
def create_gradio_ui() -> gr.Blocks:
"""
Create and configure the Gradio UI for object detection.
Returns:
Gradio Blocks object representing the UI.
Raises:
RuntimeError: If UI creation fails.
"""
try:
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as app:
gr.Markdown(
f"""
# π Object Detection App
Upload an image or provide a URL to detect objects using state-of-the-art transformer models (DETR, YOLOS).
Running on port: {os.getenv('GRADIO_SERVER_PORT', 'auto-selected')}
"""
)
with gr.Tabs():
with gr.Tab("π· Image Upload"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input")
model_choice = gr.Dropdown(
choices=VALID_MODELS,
value=VALID_MODELS[0],
label="π Select Model",
info="Choose a model for object detection or panoptic segmentation.",
)
model_info = gr.Markdown(
f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}",
visible=True,
)
image_input = gr.Image(type="pil", label="π· Upload Image")
image_url_input = gr.Textbox(
label="π Image URL",
placeholder="https://example.com/image.jpg",
)
with gr.Row():
submit_btn = gr.Button("β¨ Detect", variant="primary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
model_choice.change(
fn=lambda model_name: (
f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}"
),
inputs=model_choice,
outputs=model_info,
)
with gr.Column(scale=2):
gr.Markdown("### Results")
error_output = gr.Textbox(
label="β οΈ Errors",
visible=False,
lines=3,
max_lines=5,
)
output_image = gr.Image(
type="pil",
label="π― Detected Image",
interactive=False,
)
with gr.Row():
objects_output = gr.DataFrame(
label="π Detected Objects",
interactive=False,
value=None,
)
unique_objects_output = gr.DataFrame(
label="π Unique Objects",
interactive=False,
value=None,
)
properties_output = gr.DataFrame(
label="π Image Properties",
interactive=False,
value=None,
)
def process_for_gradio(image: Optional[Image.Image], url: Optional[str], model_name: str) -> Tuple[
Optional[Image.Image], Optional[pd.DataFrame], Optional[pd.DataFrame], Optional[pd.DataFrame], str
]:
"""
Process image for Gradio UI and return results.
Args:
image: Uploaded PIL Image (optional).
url: Image URL (optional).
model_name: Model to use for detection.
Returns:
Tuple of detected image, objects DataFrame, unique objects DataFrame, properties DataFrame, and error message.
"""
try:
if image is None and not url:
return None, None, None, None, "Please provide an image or URL"
if image and url:
return None, None, None, None, "Please provide either an image or URL, not both"
if url:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB")
detected_image, objects, scores, unique_objects, unique_scores, properties = process(
image, model_name
)
objects_df = (
pd.DataFrame(
{
"Object": objects,
"Confidence Score": [f"{score:.2f}" for score in scores],
}
)
if objects
else pd.DataFrame(columns=["Object", "Confidence Score"])
)
unique_objects_df = (
pd.DataFrame(
{
"Unique Object": unique_objects,
"Confidence Score": [f"{score:.2f}" for score in unique_scores],
}
)
if unique_objects
else pd.DataFrame(columns=["Unique Object", "Confidence Score"])
)
properties_df = (
pd.DataFrame([properties])
if properties
else pd.DataFrame(columns=properties.keys())
)
return detected_image, objects_df, unique_objects_df, properties_df, ""
except requests.RequestException as e:
error_msg = f"Error fetching image from URL: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return None, None, None, None, error_msg
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return None, None, None, None, error_msg
submit_btn.click(
fn=process_for_gradio,
inputs=[image_input, image_url_input, model_choice],
outputs=[output_image, objects_output, unique_objects_output, properties_output, error_output],
)
clear_btn.click(
fn=lambda: [None, "", None, None, None, None],
inputs=None,
outputs=[
image_input,
image_url_input,
output_image,
objects_output,
unique_objects_output,
properties_output,
error_output,
],
)
with gr.Tab("π JSON Output"):
gr.Markdown("### Process Image for JSON Output")
image_input_json = gr.Image(type="pil", label="π· Upload Image")
image_url_input_json = gr.Textbox(
label="π Image URL",
placeholder="https://example.com/image.jpg",
)
url_model_choice = gr.Dropdown(
choices=VALID_MODELS,
value=VALID_MODELS[0],
label="π Select Model",
)
url_model_info = gr.Markdown(
f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}",
visible=True,
)
url_submit_btn = gr.Button("π Process", variant="primary")
url_output = gr.JSON(label="API Response")
url_model_choice.change(
fn=lambda model_name: (
f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}"
),
inputs=url_model_choice,
outputs=url_model_info,
)
def process_url_for_gradio(image: Optional[Image.Image], url: Optional[str], model_name: str) -> Dict:
"""
Process image from file or URL for Gradio UI and return JSON response.
Args:
image: Uploaded PIL Image (optional).
url: Image URL (optional).
model_name: Model to use for detection.
Returns:
Dictionary with processed image (base64), detected objects, and confidences.
"""
try:
if image is None and not url:
return {"error": "Please provide an image or URL"}
if image and url:
return {"error": "Please provide either an image or URL, not both"}
if url:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB")
detected_image, objects, scores, unique_objects, unique_scores, _ = process(
image, model_name
)
buffered = BytesIO()
detected_image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {
"image_url": f"data:image/png;base64,{img_base64}",
"detected_objects": objects,
"confidence_scores": scores,
"unique_objects": unique_objects,
"unique_confidence_scores": unique_scores,
}
except requests.RequestException as e:
error_msg = f"Error fetching image from URL: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return {"error": error_msg}
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return {"error": error_msg}
url_submit_btn.click(
fn=process_url_for_gradio,
inputs=[image_input_json, image_url_input_json, url_model_choice],
outputs=[url_output],
)
with gr.Tab("βΉοΈ Help"):
gr.Markdown(
"""
## How to Use
- **Image Upload**: Select a model, upload an image or provide a URL, and click "Detect" to see detected objects and image properties.
- **JSON Output**: Upload an image or enter a URL, select a model, and click "Process" to get results in JSON format.
- **Models**: Choose from DETR (object detection or panoptic segmentation) or YOLOS (lightweight detection).
- **Clear**: Reset all inputs and outputs using the "Clear" button in the Image Upload tab.
- **Errors**: Check the error box (Image Upload) or JSON response (JSON Output) for issues.
## Tips
- Use high-quality images for better detection results.
- Panoptic models (e.g., DETR-ResNet-50-panoptic) provide segmentation masks for complex scenes.
- For faster processing, try YOLOS-Tiny on resource-constrained devices.
"""
)
return app
except Exception as e:
logger.error(f"Error creating Gradio UI: {str(e)}\n{traceback.format_exc()}")
raise RuntimeError(f"Failed to create Gradio UI: {str(e)}")
# ------------------------------
# Launcher
# ------------------------------
def parse_args() -> argparse.Namespace:
"""
Parse command-line arguments with defaults and ignore unrecognized arguments.
Returns:
Parsed arguments as a Namespace object.
Raises:
SystemExit: If argument parsing fails (handled by argparse).
"""
parser = argparse.ArgumentParser(
description="Launcher for Object Detection App with Gradio UI and optional FastAPI server."
)
parser.add_argument(
"--gradio-port",
type=int,
default=DEFAULT_GRADIO_PORT,
help=f"Port for the Gradio UI (default: {DEFAULT_GRADIO_PORT}).",
)
parser.add_argument(
"--enable-fastapi",
action="store_true",
default=False,
help="Enable the FastAPI server (disabled by default).",
)
parser.add_argument(
"--fastapi-port",
type=int,
default=DEFAULT_FASTAPI_PORT,
help=f"Port for the FastAPI server if enabled (default: {DEFAULT_FASTAPI_PORT}).",
)
# Parse known arguments and ignore unrecognized ones (e.g., Jupyter kernel args)
args, _ = parser.parse_known_args()
return args
def find_available_port(start_port: int, port_range: range, max_attempts: int) -> Optional[int]:
"""
Find an available port within the specified range.
Args:
start_port: Initial port to try (e.g., from args or environment).
port_range: Range of ports to attempt.
max_attempts: Maximum number of ports to try.
Returns:
Available port number, or None if no port is found.
Raises:
OSError: If port binding fails for reasons other than port in use.
"""
import socket
port = start_port
attempts = 0
# Check environment variable GRADIO_SERVER_PORT
env_port = os.getenv("GRADIO_SERVER_PORT")
if env_port and env_port.isdigit():
port = int(env_port)
logger.info(f"Using GRADIO_SERVER_PORT from environment: {port}")
while attempts < max_attempts:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("0.0.0.0", port))
logger.debug(f"Port {port} is available")
return port
except OSError as e:
if e.errno == 98: # Port in use
logger.debug(f"Port {port} is in use")
port = port + 1 if port < max(port_range) else min(port_range)
attempts += 1
else:
raise
except Exception as e:
logger.error(f"Error checking port {port}: {str(e)}")
raise
logger.error(f"No available port found in range {min(port_range)}-{max(port_range)} after {max_attempts} attempts")
return None
def run_fastapi_server(host: str, port: int) -> None:
"""
Run the FastAPI server using Uvicorn.
Args:
host: Host address for the FastAPI server.
port: Port for the FastAPI server.
"""
try:
uvicorn.run(app, host=host, port=port)
except Exception as e:
logger.error(f"Error running FastAPI server: {str(e)}\n{traceback.format_exc()}")
sys.exit(1)
def main() -> None:
"""
Main function to launch Gradio UI and optional FastAPI server.
Raises:
SystemExit: If the application is interrupted or encounters an error.
"""
try:
# Apply nest_asyncio to allow nested event loops in Jupyter/Colab
nest_asyncio.apply()
# Parse command-line arguments
args = parse_args()
logger.info(f"Parsed arguments: {args}")
# Find available port for Gradio
gradio_port = find_available_port(args.gradio_port, PORT_RANGE, MAX_PORT_ATTEMPTS)
if gradio_port is None:
logger.error("Failed to find an available port for Gradio UI")
sys.exit(1)
# Launch FastAPI server in a separate thread if enabled
if args.enable_fastapi:
logger.info(f"Starting FastAPI server on port {args.fastapi_port}")
fastapi_thread = threading.Thread(
target=run_fastapi_server,
args=("0.0.0.0", args.fastapi_port),
daemon=True
)
fastapi_thread.start()
# Launch Gradio UI
logger.info(f"Starting Gradio UI on port {gradio_port}")
app = create_gradio_ui()
app.launch(server_port=gradio_port, server_name="0.0.0.0")
except KeyboardInterrupt:
logger.info("Application terminated by user.")
sys.exit(0)
except OSError as e:
logger.error(f"Port binding error: {str(e)}")
sys.exit(1)
except Exception as e:
logger.error(f"Error running application: {str(e)}\n{traceback.format_exc()}")
sys.exit(1)
if __name__ == "__main__":
main() |