File size: 7,930 Bytes
e04b7b1
 
 
 
e4ef1d0
383874a
227cfcc
840aebb
e04b7b1
 
 
 
 
 
b2b7497
e4ef1d0
 
 
e04b7b1
 
 
 
 
b2b7497
e04b7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3408bc
e04b7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3408bc
e04b7b1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
from huggingface_hub import InferenceClient
import numpy as np
import pandas as pd
import joblib


import pickle

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
cols = pd.read_csv('./Columns.csv')
cols = cols['Cols']
#with open("./model.pkl", "rb") as f:
 #   model = pickle.load(f)
model = joblib.load("./model.pkl")

severityDictionary=dict()
description_list = dict()
precautionDictionary=dict()
symptoms_dict = {}
x = cols
for index, symptom in enumerate(x):
       symptoms_dict[symptom] = index

def calc_condition(exp,days):
    sum=0
    for item in exp:
         sum=sum+severityDictionary[item]
    if((sum*days)/(len(exp)+1)>13):
        print("You should take the consultation from doctor. ")
    else:
        print("It might not be that bad but you should take precautions.")

def getDescription():
    global description_list
    with open('/kaggle/input/dataset/symptom_Description.csv') as csv_file:
        csv_reader = csv.reader(csv_file, delimiter=',')
        line_count = 0
        for row in csv_reader:
            _description={row[0]:row[1]}
            description_list.update(_description)

def getSeverityDict():
    global severityDictionary
    with open('/kaggle/input/dataset/Symptom_severity.csv') as csv_file:
        csv_reader = csv.reader(csv_file, delimiter=',')
        line_count = 0
        try:
            for row in csv_reader:
                _diction={row[0]:int(row[1])}
                severityDictionary.update(_diction)
        except:
            pass

def getprecautionDict():
    global precautionDictionary
    with open('/kaggle/input/dataset/symptom_precaution.csv') as csv_file:
        csv_reader = csv.reader(csv_file, delimiter=',')
        line_count = 0
        for row in csv_reader:
            _prec={row[0]:[row[1],row[2],row[3],row[4]]}

            precautionDictionary.update(_prec)

def getInfo():
    print("-----------------------------------HealthCare ChatBot-----------------------------------")
    print("\nYour Name? \t\t\t\t",end="->")
    name=input("")
    print("Hello", name)

def check_pattern(dis_list,inp):
    pred_list=[]
    inp=inp.replace(' ','_')
    patt = f"{inp}"
    regexp = re.compile(patt)
    pred_list=[item for item in dis_list if regexp.search(item)]
    if(len(pred_list)>0):
        return 1,pred_list
    else:
        return 0,[]

def sec_predict(symptoms_exp):
    df = pd.read_csv('/kaggle/input/dataset/Training.csv')
    X = df.iloc[:, :-1]
    y = df['prognosis']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=20)
    rf_clf = DecisionTreeClassifier()
    rf_clf.fit(X_train, y_train)
    symptoms_dict = {symptom: index for index, symptom in enumerate(X)}
    input_vector = np.zeros(len(symptoms_dict))

    for item in symptoms_exp:

      input_vector[[symptoms_dict[item]]] = 1



    return rf_clf.predict([input_vector])

def print_disease(node):
    node = node[0]
    val  = node.nonzero()
    disease = le.inverse_transform(val[0])
    return list(map(lambda x:x.strip(),list(disease)))


def tree_to_code(tree, feature_names):
    getSeverityDict()
    getDescription()
    getprecautionDict()
    getInfo()
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    chk_dis=",".join(feature_names).split(",")
    symptoms_present = []
    while True:
       # engine.say("\n Enter the symptom you are experiencing \t\t\t",)
        #engine.runAndWait()
        print("\nEnter the symptom you are experiencing  \t\t",end="->")
        disease_input = input("")
        conf,cnf_dis=check_pattern(chk_dis,disease_input)
        if conf==1:
            print("searches related to input: ")
            for num,it in enumerate(cnf_dis):
                print(num,")",it)
            if num!=0:
                print(f"Select the one you meant (0 - {num}):  ", end="")
                conf_inp = int(input(""))
            else:
                conf_inp=0
            disease_input=cnf_dis[conf_inp]
            break
        else:
            print("Enter valid symptom.")
    while True:
        try:
            num_days=int(input("Okay. From how many days ? : "))
            break
        except:
            print("Enter valid input.")
            
    def recurse(node, depth):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            if name == disease_input:
                val = 1
            else:
                val = 0
            if  val <= threshold:
                recurse(tree_.children_left[node], depth + 1)
            else:
                symptoms_present.append(name)
                recurse(tree_.children_right[node], depth + 1)
        else:
            present_disease = print_disease(tree_.value[node])
            red_cols = reduced_data.columns
            symptoms_given = red_cols[reduced_data.loc[present_disease].values[0].nonzero()]
            #engine.say("Are you experiencing any")
            #engine.runAndWait()
            print("Are you experiencing any ")
            symptoms_exp=[]
            for syms in list(symptoms_given):
                inp=""
               # engine.say(f"{syms}, are you experiencing it?")
                #engine.runAndWait()
                print(syms,"? : ",end='')
                while True:
                    inp=input("")
                    if(inp=="yes" or inp=="no"):
                        break
                    else:
                        print("provide proper answers i.e. (yes/no) : ",end="")
                if(inp=="yes"):
                    symptoms_exp.append(syms)

            second_prediction=sec_predict(symptoms_exp)
            calc_condition(symptoms_exp,num_days)
            if(present_disease[0]==second_prediction[0]):
               # engine.say("You may have ", present_disease[0])
                #engine.runAndWait()
                print("You may have ", present_disease[0])
                print(description_list[present_disease[0]])
            else:
                print("You may have ", present_disease[0], "or ", second_prediction[0])
                print(description_list[present_disease[0]])
                print(description_list[second_prediction[0]])

            precution_list=precautionDictionary[present_disease[0]]
            print("Take following measures : ")
            for  i,j in enumerate(precution_list):
                print(i+1,")",j)


    recurse(0, 1)
    print("----------------------------------------------------------------------------------------------------------------------------------")








            
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    tree_to_code(model,cols),
)


if __name__ == "__main__":
    demo.launch()