File size: 7,930 Bytes
e04b7b1 e4ef1d0 383874a 227cfcc 840aebb e04b7b1 b2b7497 e4ef1d0 e04b7b1 b2b7497 e04b7b1 b3408bc e04b7b1 b3408bc e04b7b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
from huggingface_hub import InferenceClient
import numpy as np
import pandas as pd
import joblib
import pickle
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
cols = pd.read_csv('./Columns.csv')
cols = cols['Cols']
#with open("./model.pkl", "rb") as f:
# model = pickle.load(f)
model = joblib.load("./model.pkl")
severityDictionary=dict()
description_list = dict()
precautionDictionary=dict()
symptoms_dict = {}
x = cols
for index, symptom in enumerate(x):
symptoms_dict[symptom] = index
def calc_condition(exp,days):
sum=0
for item in exp:
sum=sum+severityDictionary[item]
if((sum*days)/(len(exp)+1)>13):
print("You should take the consultation from doctor. ")
else:
print("It might not be that bad but you should take precautions.")
def getDescription():
global description_list
with open('/kaggle/input/dataset/symptom_Description.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
_description={row[0]:row[1]}
description_list.update(_description)
def getSeverityDict():
global severityDictionary
with open('/kaggle/input/dataset/Symptom_severity.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
try:
for row in csv_reader:
_diction={row[0]:int(row[1])}
severityDictionary.update(_diction)
except:
pass
def getprecautionDict():
global precautionDictionary
with open('/kaggle/input/dataset/symptom_precaution.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
_prec={row[0]:[row[1],row[2],row[3],row[4]]}
precautionDictionary.update(_prec)
def getInfo():
print("-----------------------------------HealthCare ChatBot-----------------------------------")
print("\nYour Name? \t\t\t\t",end="->")
name=input("")
print("Hello", name)
def check_pattern(dis_list,inp):
pred_list=[]
inp=inp.replace(' ','_')
patt = f"{inp}"
regexp = re.compile(patt)
pred_list=[item for item in dis_list if regexp.search(item)]
if(len(pred_list)>0):
return 1,pred_list
else:
return 0,[]
def sec_predict(symptoms_exp):
df = pd.read_csv('/kaggle/input/dataset/Training.csv')
X = df.iloc[:, :-1]
y = df['prognosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=20)
rf_clf = DecisionTreeClassifier()
rf_clf.fit(X_train, y_train)
symptoms_dict = {symptom: index for index, symptom in enumerate(X)}
input_vector = np.zeros(len(symptoms_dict))
for item in symptoms_exp:
input_vector[[symptoms_dict[item]]] = 1
return rf_clf.predict([input_vector])
def print_disease(node):
node = node[0]
val = node.nonzero()
disease = le.inverse_transform(val[0])
return list(map(lambda x:x.strip(),list(disease)))
def tree_to_code(tree, feature_names):
getSeverityDict()
getDescription()
getprecautionDict()
getInfo()
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
chk_dis=",".join(feature_names).split(",")
symptoms_present = []
while True:
# engine.say("\n Enter the symptom you are experiencing \t\t\t",)
#engine.runAndWait()
print("\nEnter the symptom you are experiencing \t\t",end="->")
disease_input = input("")
conf,cnf_dis=check_pattern(chk_dis,disease_input)
if conf==1:
print("searches related to input: ")
for num,it in enumerate(cnf_dis):
print(num,")",it)
if num!=0:
print(f"Select the one you meant (0 - {num}): ", end="")
conf_inp = int(input(""))
else:
conf_inp=0
disease_input=cnf_dis[conf_inp]
break
else:
print("Enter valid symptom.")
while True:
try:
num_days=int(input("Okay. From how many days ? : "))
break
except:
print("Enter valid input.")
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
if name == disease_input:
val = 1
else:
val = 0
if val <= threshold:
recurse(tree_.children_left[node], depth + 1)
else:
symptoms_present.append(name)
recurse(tree_.children_right[node], depth + 1)
else:
present_disease = print_disease(tree_.value[node])
red_cols = reduced_data.columns
symptoms_given = red_cols[reduced_data.loc[present_disease].values[0].nonzero()]
#engine.say("Are you experiencing any")
#engine.runAndWait()
print("Are you experiencing any ")
symptoms_exp=[]
for syms in list(symptoms_given):
inp=""
# engine.say(f"{syms}, are you experiencing it?")
#engine.runAndWait()
print(syms,"? : ",end='')
while True:
inp=input("")
if(inp=="yes" or inp=="no"):
break
else:
print("provide proper answers i.e. (yes/no) : ",end="")
if(inp=="yes"):
symptoms_exp.append(syms)
second_prediction=sec_predict(symptoms_exp)
calc_condition(symptoms_exp,num_days)
if(present_disease[0]==second_prediction[0]):
# engine.say("You may have ", present_disease[0])
#engine.runAndWait()
print("You may have ", present_disease[0])
print(description_list[present_disease[0]])
else:
print("You may have ", present_disease[0], "or ", second_prediction[0])
print(description_list[present_disease[0]])
print(description_list[second_prediction[0]])
precution_list=precautionDictionary[present_disease[0]]
print("Take following measures : ")
for i,j in enumerate(precution_list):
print(i+1,")",j)
recurse(0, 1)
print("----------------------------------------------------------------------------------------------------------------------------------")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
tree_to_code(model,cols),
)
if __name__ == "__main__":
demo.launch() |