Update app.py
Browse files
app.py
CHANGED
@@ -1,443 +1,270 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
- Heart Rate: {vitals['hr']}bpm
|
29 |
-
- Blood Pressure: {vitals['bp']}
|
30 |
-
- SpO2: {vitals['o2']}%
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
"""
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
result = response.choices[0].message.content
|
53 |
-
|
54 |
-
# Determine priority class based on content
|
55 |
-
priority = "stable" # Default to stable
|
56 |
-
if "Emergent" in result or "emergency" in result.lower() or "طارئ" in result or "طوارئ" in result:
|
57 |
-
priority = "emergency"
|
58 |
-
elif "Urgent" in result or "urgent" in result.lower() or "عاجل" in result or "ملح" in result:
|
59 |
-
priority = "urgent"
|
60 |
-
|
61 |
-
# Update priority in state
|
62 |
-
state.priority_level = priority
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
state.loading = False
|
71 |
|
72 |
-
|
73 |
-
return f"""
|
74 |
-
<div class="{priority} report-section">
|
75 |
-
<div>{formatted_result}</div>
|
76 |
-
</div>
|
77 |
-
</div> <!-- Closing tag for analysis-container -->
|
78 |
-
"""
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
return
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
def
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
def
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
gr.update(value=common_cases[case_name]["symptom"]),
|
127 |
-
gr.update(value=common_cases[case_name]["duration"]),
|
128 |
-
gr.update(value=common_cases[case_name]["severity"])
|
129 |
-
]
|
130 |
-
return [gr.update(), gr.update(), gr.update()]
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
<p>World-class AI-powered medical triage for emergency departments</p>
|
140 |
-
</div>
|
141 |
-
</div>
|
142 |
-
""")
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
with gr.Column(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
interactive=True,
|
164 |
-
elem_classes="action-button"
|
165 |
-
)
|
166 |
-
check_vitals_btn = gr.Button(
|
167 |
-
"🩺 Check Vital Signs",
|
168 |
-
interactive=False,
|
169 |
-
elem_classes="action-button"
|
170 |
-
)
|
171 |
-
analyze_btn = gr.Button(
|
172 |
-
"🔍 Analyze Case",
|
173 |
-
interactive=False,
|
174 |
-
elem_classes="action-button"
|
175 |
-
)
|
176 |
-
reset_btn = gr.Button(
|
177 |
-
"🔄 Reset",
|
178 |
-
variant="secondary",
|
179 |
-
elem_classes="action-button"
|
180 |
-
)
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
vitals_display = gr.JSON(label="Raw Vitals Data")
|
188 |
-
|
189 |
-
# NEW LAYOUT: 3 boxes in a horizontal row with equal dimensions using CSS Grid
|
190 |
-
with gr.Row(elem_classes="equal-height-container"):
|
191 |
-
# Box 1: Patient Info
|
192 |
-
with gr.Column(elem_classes="card-container"):
|
193 |
-
patient_card = gr.HTML(visible=False)
|
194 |
-
|
195 |
-
# Box 2: Vital Signs
|
196 |
-
with gr.Column(elem_classes="card-container"):
|
197 |
-
formatted_vitals = gr.HTML(visible=False)
|
198 |
-
|
199 |
-
# Box 3: Symptom Recording
|
200 |
-
with gr.Column(elem_classes="card-container"):
|
201 |
-
recording_panel = gr.HTML(visible=False)
|
202 |
-
|
203 |
-
# Audio component for all symptoms - will be placed in the recording panel
|
204 |
-
all_symptoms_audio = gr.Audio(
|
205 |
-
label="Record your symptoms",
|
206 |
-
visible=False,
|
207 |
-
type="filepath",
|
208 |
-
format="wav",
|
209 |
-
elem_id="audio-recorder"
|
210 |
-
)
|
211 |
-
|
212 |
-
# Hidden text inputs (we only need values, not visual display)
|
213 |
-
with gr.Group(visible=False):
|
214 |
-
symptom_q = gr.Textbox(label="What is your primary symptom?")
|
215 |
-
duration_q = gr.Textbox(label="How long have you had it? (in hours)")
|
216 |
-
severity_q = gr.Textbox(label="On a scale of 1-10, how bad is the pain?")
|
217 |
-
|
218 |
-
# Title for analysis results
|
219 |
-
analysis_title = gr.HTML(visible=False)
|
220 |
-
|
221 |
-
# Loading indicator and report appear underneath all three boxes
|
222 |
-
loading = gr.HTML(visible=False)
|
223 |
-
report = gr.HTML(visible=False)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
"symptom": "Severe lower right abdominal pain with nausea",
|
239 |
-
"duration": "12",
|
240 |
-
"severity": "7"
|
241 |
-
},
|
242 |
-
"Shortness of Breath": {
|
243 |
-
"symptom": "Difficulty breathing, wheezing sounds",
|
244 |
-
"duration": "4",
|
245 |
-
"severity": "6"
|
246 |
-
},
|
247 |
-
"Head Injury": {
|
248 |
-
"symptom": "Hit head during fall, brief loss of consciousness",
|
249 |
-
"duration": "1",
|
250 |
-
"severity": "5"
|
251 |
-
}
|
252 |
-
}
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
257 |
)
|
258 |
|
259 |
-
load_case_btn = gr.Button("Load Case Data", variant="secondary")
|
260 |
-
|
261 |
-
# Define the event handler inside the Blocks context
|
262 |
-
load_case_btn.click(
|
263 |
-
fn=lambda case_name: load_demo_case(case_name, common_cases),
|
264 |
-
inputs=[case_selector],
|
265 |
-
outputs=[symptom_q, duration_q, severity_q]
|
266 |
-
)
|
267 |
-
|
268 |
-
# About tab
|
269 |
with gr.Tab("About"):
|
270 |
gr.Markdown("""
|
271 |
-
#
|
272 |
|
273 |
-
|
274 |
|
275 |
-
|
|
|
276 |
|
277 |
-
|
278 |
-
- **Intelligent prioritization** of cases based on medical urgency
|
279 |
-
- **Multilingual support** for diverse patient populations
|
280 |
-
- **Voice recognition** for hands-free data entry during busy periods
|
281 |
-
- **Real-time monitoring** of changing patient conditions
|
282 |
|
283 |
-
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
- OpenAI Whisper API for speech recognition
|
287 |
-
- Gradio for interactive UI components
|
288 |
-
- Real-time vital sign monitoring and visualization
|
289 |
-
- Responsive design for various device sizes
|
290 |
-
|
291 |
-
### Important Notice
|
292 |
-
|
293 |
-
This is a technology demonstration only. All medical advice and diagnoses should be verified by qualified healthcare professionals. This system is not a replacement for medical expertise.
|
294 |
""")
|
295 |
|
296 |
-
|
297 |
-
# Generate new patient
|
298 |
-
generate_btn.click(
|
299 |
-
fn=generate_patient,
|
300 |
-
inputs=[lang],
|
301 |
-
outputs=[patient_info]
|
302 |
-
).then(
|
303 |
-
lambda patient, lang: format_patient_card(patient, lang),
|
304 |
-
inputs=[patient_info, lang],
|
305 |
-
outputs=[patient_card]
|
306 |
-
).then(
|
307 |
-
# Clear previous data when generating a new patient
|
308 |
-
lambda: [
|
309 |
-
gr.update(visible=True),
|
310 |
-
gr.update(interactive=True),
|
311 |
-
gr.update(value=""), # Clear formatted_vitals
|
312 |
-
gr.update(value=""), # Clear recording_panel
|
313 |
-
gr.update(value=None), # Clear all_symptoms_audio
|
314 |
-
gr.update(value=""), # Clear analysis_title
|
315 |
-
gr.update(value=""), # Clear report
|
316 |
-
gr.update(visible=False), # Hide report
|
317 |
-
gr.update(visible=False), # Hide analysis_title
|
318 |
-
gr.update(visible=False), # Hide all_symptoms_audio
|
319 |
-
gr.update(interactive=False) # Disable analyze button
|
320 |
-
],
|
321 |
-
outputs=[
|
322 |
-
patient_card,
|
323 |
-
check_vitals_btn,
|
324 |
-
formatted_vitals,
|
325 |
-
recording_panel,
|
326 |
-
all_symptoms_audio,
|
327 |
-
analysis_title,
|
328 |
-
report,
|
329 |
-
report,
|
330 |
-
analysis_title,
|
331 |
-
all_symptoms_audio,
|
332 |
-
analyze_btn
|
333 |
-
]
|
334 |
-
)
|
335 |
-
|
336 |
-
# Language change handler
|
337 |
-
lang.change(
|
338 |
-
fn=lambda patient, vitals, lang, priority: [
|
339 |
-
format_patient_card(patient, lang),
|
340 |
-
format_vitals_display(vitals, lang),
|
341 |
-
format_recording_panel(lang),
|
342 |
-
format_analysis_title(priority, lang) if priority else ""
|
343 |
-
],
|
344 |
-
inputs=[patient_info, vitals_display, lang, gr.State(lambda: state.priority_level)],
|
345 |
-
outputs=[patient_card, formatted_vitals, recording_panel, analysis_title]
|
346 |
-
)
|
347 |
-
|
348 |
-
# Check vital signs
|
349 |
-
check_vitals_btn.click(
|
350 |
-
fn=simulate_initial_vitals,
|
351 |
-
inputs=[],
|
352 |
-
outputs=[vitals_display]
|
353 |
-
).then(
|
354 |
-
lambda vitals, lang: format_vitals_display(vitals, lang),
|
355 |
-
inputs=[vitals_display, lang],
|
356 |
-
outputs=[formatted_vitals]
|
357 |
-
).then(
|
358 |
-
lambda lang: format_recording_panel(lang),
|
359 |
-
inputs=[lang],
|
360 |
-
outputs=[recording_panel]
|
361 |
-
).then(
|
362 |
-
lambda: [gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)],
|
363 |
-
outputs=[formatted_vitals, recording_panel, all_symptoms_audio]
|
364 |
-
).then(
|
365 |
-
fn=lambda vd, fv, lg: start_vital_monitoring(vd, fv, lg),
|
366 |
-
inputs=[vitals_display, formatted_vitals, lang],
|
367 |
-
outputs=[]
|
368 |
-
).then(
|
369 |
-
lambda: gr.update(interactive=True),
|
370 |
-
outputs=[analyze_btn]
|
371 |
-
)
|
372 |
-
|
373 |
-
# Handle single audio recording for all symptoms
|
374 |
-
all_symptoms_audio.change(
|
375 |
-
fn=lambda audio, lang: process_all_symptoms_audio(audio, lang),
|
376 |
-
inputs=[all_symptoms_audio, lang],
|
377 |
-
outputs=[symptom_q, duration_q, severity_q]
|
378 |
-
)
|
379 |
-
|
380 |
-
# Handle text input
|
381 |
-
symptom_q.change(
|
382 |
-
fn=lambda text: update_text_input(text, 0),
|
383 |
-
inputs=[symptom_q],
|
384 |
-
outputs=[]
|
385 |
-
)
|
386 |
-
|
387 |
-
duration_q.change(
|
388 |
-
fn=lambda text: update_text_input(text, 1),
|
389 |
-
inputs=[duration_q],
|
390 |
-
outputs=[]
|
391 |
-
)
|
392 |
-
|
393 |
-
severity_q.change(
|
394 |
-
fn=lambda text: update_text_input(text, 2),
|
395 |
-
inputs=[severity_q],
|
396 |
-
outputs=[]
|
397 |
-
)
|
398 |
-
|
399 |
-
# Analyze patient case - FIXING THE ORDER HERE
|
400 |
-
analyze_btn.click(
|
401 |
-
# First hide any existing analysis
|
402 |
-
lambda: [gr.update(visible=False), gr.update(visible=False)],
|
403 |
-
outputs=[analysis_title, report]
|
404 |
-
).then(
|
405 |
-
# Show loading indicator
|
406 |
-
fn=show_loading_indicator,
|
407 |
-
inputs=[],
|
408 |
-
outputs=[loading]
|
409 |
-
).then(
|
410 |
-
lambda: gr.update(visible=True),
|
411 |
-
outputs=[loading]
|
412 |
-
).then(
|
413 |
-
# Process the analysis
|
414 |
-
fn=analyze_case,
|
415 |
-
inputs=[lang, patient_info, vitals_display],
|
416 |
-
outputs=[report]
|
417 |
-
).then(
|
418 |
-
# Now create the analysis title with correct priority AFTER analyzing
|
419 |
-
fn=lambda lang: format_analysis_title(state.priority_level, lang),
|
420 |
-
inputs=[lang],
|
421 |
-
outputs=[analysis_title]
|
422 |
-
).then(
|
423 |
-
# Show both the title and report, hide loading
|
424 |
-
lambda: [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)],
|
425 |
-
outputs=[analysis_title, report, loading]
|
426 |
-
)
|
427 |
-
|
428 |
-
# Reset application state
|
429 |
-
reset_btn.click(
|
430 |
-
fn=reset_app,
|
431 |
-
inputs=[],
|
432 |
-
outputs=[
|
433 |
-
patient_info, patient_card, vitals_display, formatted_vitals,
|
434 |
-
recording_panel, all_symptoms_audio,
|
435 |
-
symptom_q, duration_q, severity_q,
|
436 |
-
analysis_title, loading, report,
|
437 |
-
generate_btn, check_vitals_btn, analyze_btn
|
438 |
-
]
|
439 |
-
)
|
440 |
|
441 |
-
#
|
442 |
if __name__ == "__main__":
|
|
|
443 |
demo.launch()
|
|
|
1 |
+
# police_vision_translator.py
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor
|
4 |
+
from transformers import ViTImageProcessor, AutoModelForVisionEncoderDecoder
|
5 |
+
from transformers import AutoModelForSpeechSeq2Seq, SpeechT5Processor
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
import os
|
10 |
+
import tempfile
|
11 |
+
import cv2
|
12 |
|
13 |
+
# Initialize models
|
14 |
+
print("Loading models...")
|
15 |
+
|
16 |
+
# 1. Vision Document Analysis model
|
17 |
+
document_processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
18 |
+
document_model = AutoModelForVisionEncoderDecoder.from_pretrained("Salesforce/blip-image-captioning-large")
|
19 |
+
|
20 |
+
# 2. OCR for text extraction - FIX: Use correct model class for TrOCR
|
21 |
+
ocr_processor = AutoProcessor.from_pretrained("microsoft/trocr-base-printed")
|
22 |
+
ocr_model = AutoModelForVisionEncoderDecoder.from_pretrained("microsoft/trocr-base-printed")
|
23 |
+
|
24 |
+
# 3. Translation model
|
25 |
+
translator_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
26 |
+
translator_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
27 |
+
|
28 |
+
# 4. Speech recognition - Use pipeline which handles model loading correctly
|
29 |
+
speech_recognizer = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
|
30 |
+
|
31 |
+
# 5. Text-to-speech - Use correct model type
|
32 |
+
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
33 |
+
tts_model = AutoModelForSpeechSeq2Seq.from_pretrained("microsoft/speecht5_tts")
|
34 |
+
|
35 |
+
print("Models loaded!")
|
36 |
|
37 |
+
# Language codes mapping
|
38 |
+
LANGUAGE_CODES = {
|
39 |
+
"English": "eng_Latn",
|
40 |
+
"Arabic": "ara_Arab",
|
41 |
+
"Hindi": "hin_Deva",
|
42 |
+
"Urdu": "urd_Arab",
|
43 |
+
"Chinese": "zho_Hans",
|
44 |
+
"Russian": "rus_Cyrl",
|
45 |
+
"French": "fra_Latn",
|
46 |
+
"German": "deu_Latn",
|
47 |
+
"Spanish": "spa_Latn",
|
48 |
+
"Japanese": "jpn_Jpan"
|
49 |
+
}
|
50 |
+
|
51 |
+
def detect_document_type(image):
|
52 |
+
"""Detect what type of document is in the image"""
|
53 |
+
# Use vision model to get general description
|
54 |
+
inputs = document_processor(images=image, return_tensors="pt")
|
55 |
+
outputs = document_model.generate(**inputs, max_length=50)
|
56 |
|
57 |
+
# Convert output IDs to text
|
58 |
+
description = document_model.decoder.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
59 |
|
60 |
+
# Simple rule-based classification
|
61 |
+
if "passport" in description.lower():
|
62 |
+
return "Passport"
|
63 |
+
elif "license" in description.lower() or "driving" in description.lower():
|
64 |
+
return "Driver's License"
|
65 |
+
elif "id" in description.lower() or "identity" in description.lower() or "card" in description.lower():
|
66 |
+
return "ID Card"
|
67 |
+
else:
|
68 |
+
return "Unknown Document"
|
|
|
69 |
|
70 |
+
def extract_text_from_regions(image, regions):
|
71 |
+
"""Extract text from specific regions of the document"""
|
72 |
+
results = {}
|
73 |
+
img_array = np.array(image)
|
74 |
+
|
75 |
+
for field_name, (x1, y1, x2, y2) in regions.items():
|
76 |
+
# Extract region
|
77 |
+
region = img_array[y1:y2, x1:x2]
|
78 |
+
region_pil = Image.fromarray(region)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# Process with OCR
|
81 |
+
inputs = ocr_processor(images=region_pil, return_tensors="pt")
|
82 |
+
generated_ids = ocr_model.generate(inputs["pixel_values"])
|
83 |
+
text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
84 |
|
85 |
+
results[field_name] = text
|
|
|
86 |
|
87 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def translate_text(text, source_lang, target_lang):
|
90 |
+
"""Translate text between languages"""
|
91 |
+
if not text or text.strip() == "":
|
92 |
+
return ""
|
93 |
+
|
94 |
+
# Get language codes
|
95 |
+
src_code = LANGUAGE_CODES.get(source_lang, "eng_Latn")
|
96 |
+
tgt_code = LANGUAGE_CODES.get(target_lang, "ara_Arab")
|
97 |
+
|
98 |
+
# Tokenize
|
99 |
+
inputs = translator_tokenizer(text, return_tensors="pt", padding=True)
|
100 |
+
|
101 |
+
# Translate
|
102 |
+
translated_tokens = translator_model.generate(
|
103 |
+
**inputs,
|
104 |
+
forced_bos_token_id=translator_tokenizer.lang_code_to_id[tgt_code],
|
105 |
+
max_length=128
|
106 |
+
)
|
107 |
+
|
108 |
+
# Decode
|
109 |
+
translation = translator_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
110 |
+
return translation
|
111 |
|
112 |
+
def process_document(image, source_language="English", target_language="Arabic"):
|
113 |
+
"""Main function to process document images"""
|
114 |
+
# Convert to PIL if it's not already
|
115 |
+
if not isinstance(image, Image.Image):
|
116 |
+
image = Image.fromarray(image)
|
117 |
+
|
118 |
+
# 1. Detect document type
|
119 |
+
doc_type = detect_document_type(image)
|
120 |
+
|
121 |
+
# 2. Define regions based on document type (simplified example)
|
122 |
+
# In a real implementation, you would use ML to detect these regions
|
123 |
+
width, height = image.size
|
124 |
+
|
125 |
+
if doc_type == "Passport":
|
126 |
+
regions = {
|
127 |
+
"Name": (int(width*0.3), int(height*0.2), int(width*0.9), int(height*0.3)),
|
128 |
+
"Date of Birth": (int(width*0.3), int(height*0.35), int(width*0.7), int(height*0.45)),
|
129 |
+
"Passport Number": (int(width*0.3), int(height*0.5), int(width*0.7), int(height*0.6))
|
130 |
+
}
|
131 |
+
elif doc_type == "ID Card":
|
132 |
+
regions = {
|
133 |
+
"Name": (int(width*0.3), int(height*0.15), int(width*0.9), int(height*0.25)),
|
134 |
+
"ID Number": (int(width*0.3), int(height*0.3), int(width*0.7), int(height*0.4)),
|
135 |
+
"Address": (int(width*0.1), int(height*0.5), int(width*0.9), int(height*0.7))
|
136 |
+
}
|
137 |
+
else: # Driver's License or Unknown
|
138 |
+
regions = {
|
139 |
+
"Name": (int(width*0.3), int(height*0.2), int(width*0.9), int(height*0.3)),
|
140 |
+
"License Number": (int(width*0.3), int(height*0.4), int(width*0.7), int(height*0.5)),
|
141 |
+
"Expiration": (int(width*0.3), int(height*0.6), int(width*0.7), int(height*0.7))
|
142 |
+
}
|
143 |
+
|
144 |
+
# 3. Extract text from regions
|
145 |
+
extracted_info = extract_text_from_regions(image, regions)
|
146 |
|
147 |
+
# 4. Translate extracted text
|
148 |
+
translated_info = {}
|
149 |
+
for field, text in extracted_info.items():
|
150 |
+
translated_info[field] = translate_text(text, source_language, target_language)
|
151 |
+
|
152 |
+
# 5. Create annotated image
|
153 |
+
annotated_img = image.copy()
|
154 |
+
draw = ImageDraw.Draw(annotated_img)
|
155 |
+
|
156 |
+
# Attempt to load a font that supports Arabic
|
157 |
+
try:
|
158 |
+
font = ImageFont.truetype("arial.ttf", 20) # Fallback to system font
|
159 |
+
except IOError:
|
160 |
+
font = ImageFont.load_default()
|
161 |
+
|
162 |
+
# Draw boxes and translations
|
163 |
+
for field, (x1, y1, x2, y2) in regions.items():
|
164 |
+
# Draw rectangle around region
|
165 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline="green", width=3)
|
166 |
+
|
167 |
+
# Draw field name and translated text
|
168 |
+
draw.text((x1, y1-25), field, fill="blue", font=font)
|
169 |
+
draw.text((x1, y2+5), f"{extracted_info[field]} → {translated_info[field]}",
|
170 |
+
fill="red", font=font)
|
171 |
+
|
172 |
+
# Return results
|
173 |
+
return {
|
174 |
+
"document_type": doc_type,
|
175 |
+
"annotated_image": annotated_img,
|
176 |
+
"extracted_text": extracted_info,
|
177 |
+
"translated_text": translated_info
|
178 |
+
}
|
179 |
|
180 |
+
def transcribe_speech(audio_file, source_language="English"):
|
181 |
+
"""Transcribe speech from audio file"""
|
182 |
+
result = speech_recognizer(audio_file, generate_kwargs={"language": source_language.lower()})
|
183 |
+
return result["text"]
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
+
def translate_speech(audio_file, source_language="English", target_language="Arabic"):
|
186 |
+
"""Transcribe and translate speech"""
|
187 |
+
# 1. Transcribe speech to text
|
188 |
+
transcription = transcribe_speech(audio_file, source_language)
|
189 |
+
|
190 |
+
# 2. Translate text
|
191 |
+
translation = translate_text(transcription, source_language, target_language)
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
return {
|
194 |
+
"original_text": transcription,
|
195 |
+
"translated_text": translation
|
196 |
+
}
|
197 |
+
|
198 |
+
# Gradio Interface
|
199 |
+
def create_ui():
|
200 |
+
with gr.Blocks(title="Police Vision Translator") as app:
|
201 |
+
gr.Markdown("# Dubai Police Vision Translator System")
|
202 |
+
gr.Markdown("## Translate documents, environmental text, and speech in real-time")
|
203 |
+
|
204 |
+
with gr.Tab("Document Translation"):
|
205 |
+
with gr.Row():
|
206 |
+
with gr.Column():
|
207 |
+
doc_input = gr.Image(type="pil", label="Upload Document")
|
208 |
+
source_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
209 |
+
value="English", label="Source Language")
|
210 |
+
target_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
211 |
+
value="Arabic", label="Target Language")
|
212 |
+
process_btn = gr.Button("Process Document")
|
213 |
|
214 |
+
with gr.Column():
|
215 |
+
doc_output = gr.Image(label="Annotated Document")
|
216 |
+
doc_type = gr.Textbox(label="Document Type")
|
217 |
+
extracted_info = gr.JSON(label="Extracted Information")
|
218 |
+
translated_info = gr.JSON(label="Translated Information")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
process_btn.click(
|
221 |
+
fn=lambda img, src, tgt: process_document(img, src, tgt),
|
222 |
+
inputs=[doc_input, source_lang, target_lang],
|
223 |
+
outputs=[doc_output, doc_type, extracted_info, translated_info]
|
224 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
with gr.Tab("Speech Translation"):
|
227 |
+
with gr.Row():
|
228 |
+
with gr.Column():
|
229 |
+
audio_input = gr.Audio(type="filepath", label="Record Speech")
|
230 |
+
speech_source_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
231 |
+
value="English", label="Source Language")
|
232 |
+
speech_target_lang = gr.Dropdown(choices=list(LANGUAGE_CODES.keys()),
|
233 |
+
value="Arabic", label="Target Language")
|
234 |
+
translate_btn = gr.Button("Translate Speech")
|
235 |
+
|
236 |
+
with gr.Column():
|
237 |
+
original_text = gr.Textbox(label="Original Speech")
|
238 |
+
translated_text = gr.Textbox(label="Translated Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
translate_btn.click(
|
241 |
+
fn=lambda audio, src, tgt: translate_speech(audio, src, tgt),
|
242 |
+
inputs=[audio_input, speech_source_lang, speech_target_lang],
|
243 |
+
outputs=[original_text, translated_text]
|
244 |
)
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
with gr.Tab("About"):
|
247 |
gr.Markdown("""
|
248 |
+
# Police Vision Translator MVP
|
249 |
|
250 |
+
This system demonstrates AI-powered translation capabilities for law enforcement:
|
251 |
|
252 |
+
- **Document Translation**: Identify and translate key fields in passports, IDs, and licenses
|
253 |
+
- **Speech Translation**: Real-time translation of conversations with civilians
|
254 |
|
255 |
+
## Technologies Used
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
- Vision Transformers for document analysis
|
258 |
+
- NLLB-200 for translation between 200+ languages
|
259 |
+
- Whisper for multilingual speech recognition
|
260 |
+
- SpeechT5 for text-to-speech synthesis
|
261 |
|
262 |
+
Developed for demonstration at the World AI Expo Dubai.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
""")
|
264 |
|
265 |
+
return app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
+
# Launch app
|
268 |
if __name__ == "__main__":
|
269 |
+
demo = create_ui()
|
270 |
demo.launch()
|